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Section 1 Introduction

The word anemometer stems from the Greek "anemos" meaning "wind"

and "metron" meaning "measure". A hot-wire anemometer senses any

changes in the variables which affect the rate of heat-transfer between

the wire and the fluid. Variations in heat transfer coefficient can change

both wire temperature and resistance. If the wire is made part of a

suitable electrical circuit, these changes can be used to generate a signal

which is related to the instantaneous heat transfer. Thus, as Morkovin

(ref. 1) points out, for correct interpretation of the electrical signal we

need to know: 1) the identity of possible fluid flow variations (eg.

turbulence or sound), 2) the laws of heat transfer between the wire and

fluid, 3) the variation of wire resistance with temperature and the effects

of conduction to the supports, and 4) the response of the associated

electrical system which produces the measured current or voltage

variations.

Unfortunately, our knowledge in each of these categories is far from

complete and could well be responsible for the current lack of reliable

data. A review of hot-wire data taken in zero pressure gradient,

adiabatic or isothermal wall boundary layers illustrates the problem.

Figure 1.1 shows data from several sources for the fluctuating axial

velocity component. The scatter is so large thai it is impossible to

construe that any form of similarity with Reynolds or Mach number

exists. The picture is even more confusing when the distributions of the

,4 . other two normal stresses are plotted. Fig. 1.2 shows the measured shear
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stress distributions and again no pattern of similarity can be observed.

Indeed, only Klebanoff's incompressible measurements (shown for

comparison) approach the anticipated limiting value of unity in the wall

region. These results give some indication of the deficiencies in the

measurement and data reduction assumptions. Unfortunately, many

measurements have been with film gages which have doubtful validity

for quantitative turbulence measurements, since substrate thermal

feedback causes probe sensitivities to be functions of frequency. It is

particularly serious and complex for multiple films mounted on the same

substrate - the type of probes used for shear stress and normal stress

measurement. Even with crossed-wire probes, data interpretation is

involved and can be unreliable. For instance, the time-averaged

expression for one component of the compressible turbulent shear stress

is -(pv)'u' whereas the hot-wire, after assumption, measures (pu)'v' which

differs by a first-order term. Thus it is clear that systematic

investigations of fluctuating velocities are still needed even in

zero-pressure gradient, compressible boundary layers to establish a

reliable data base for turbulence modeling.

The effects of wind tunnel freestream turbulent flow quality are known

to determine model performance in many test cases. But, for decades,

wind tunnel testing has mainly been conducted in test section

environments which have not been adequately or consistently

documented. In general, the effects of dynamic-flow properties on

time-averaged model parameters have been largely ignored. Perhaps the

major and most widely recognized question is the influence of freestream
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disturbances on model boundary-layer transition. Recent developments

in boundary-layer transition research, particularly those of the NASA

Transition Study Group, have stressed the dominant role that freestream

fluctuations have on model boundary-layer stability at transonic and

supersonic speeds. Not only do the external fluctuation amplitudes

influence transition, but their energy spectra are also particularly

significant. Streamwise turbulence also produces fluctuations in dynamic

pressure and local Mach number which lead to time-dependent inviscid

forces on the model. The normal turbulence components produce

fluctuations in the angles of incidence and side slip. It is important,

therefore, that we document the dynamic flow quality of the tunnels

which are used for advanced aerodynamic testing. In this way, the list of

tunnels can be ranked and judgments made as to the meaningful

operating ranges of adequate flow quality in each facility relative to each

proposed test program. Problems of wind tunnel flow quality have been

addressed recently in ref. 3.

The purpose of this report is to address the requirements and pitfalls

involved in the use of hot-wire anemometers in high-speed flows and to

detail the measurement techniques required in the study of freestream

and shear-layer turbulence.
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Fig. 1.1 Reynolds normal stress distribution in compressible
turbulent boundary layers (ref. 2).
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Fig. 1.2 Reynolds shear stress distribution in compressible
turbulent boundary layers (ref. 2).
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Section 2 Definitions and Descriptive Properties

of Turbulence

Turbulence is the usual state of fluid motion except at low Reynolds

numbers. It is a three-dimensional irregular flow condition in which the

various properties of the fluid show random variations in space and time

and in which vortex stretching causes the fluctuations to spread to all

wavelengths between a minimum determined by viscosity and a

maximum determined by the boundary conditions.

Homogeneous turbulence is statistically independent of position in space

but is not necessarily isotropic. Isotropic turbulence is statistically

independent of direction, ie., u' 2 = v' 2 = w' 2 and in practice is also

homogeneous with u'v' = v'w' = u'w' = 0. Scales of turbulence are

generally referred to in terms of the dissipating length scale (micro scale)

and the energy containing (macro) scales. Wave number is the inverse of

wavelength and is defined as the frequency divided by a turbulence

velocity, normally the turbulence convection velocity.

Mean square values of fluctuating parameters define their intensity.

Probability densities provide information in the amplitude domain.

Information on turbulence structure in the space, time and frequency

domains can be obtained from auto- and cross-correlation and power

spectral density measurements.

The mean square value of a random property is defined as

5



o 2 rn uz(t) dt 2.1
T-'* 0

where VX 2 is the mean square value and the square root -W is referred to

as the root mean square (RMS) value. If we think of the instantaneous

value of a fluctuating quantity as a time mean (steady) and a fluctuating

(dynamic) component, then u = u + u' where the mean value is defined as
T

. x= lirn f u(t)dt 2.2
T**c 0

and the variance which is the mean square value about the mean is

expressed as

6= lir f[u(t) -jtxl 2dt 2.3

that we have

2- 2.4

where the nositive square root of ay2 is called standard deviation.

If the variable of interest is random, it can only be defined in terms of its

total time history and it must be defined in probabilistic terms. There

are two types of probability density function. The amplitude probability

function, [P(x)], defines the percentage of the time a property is less than

a given threshold level, as shown on the next page.
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I I I I I I
II tx I I tx 3  i

It is given by

Prob x(t)x] = P(x) = lir Tx
T-* c T

The complementary distribution function is defined as 1 P(x). The

amplitude probability density function [p(x)] defines the percen',age of

the time a property has a value within a given window width as shown

below.

x

x +Ax

x b

tx I tx 2  tx 3  tx 4

We define the probability that the signal will be in a given window as

p(x)Ax so that

p(x) = lir Prob [ x < x(t) < x+Ax] = lir lir I Tx 2.5
AX-+0 AX AX-+0 T-+ -T AX

ie. p(x) = dP(x)/dx
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The probability density distribution of a continuous variable, which is the

sum of a large number of independent variables, is approximately

normal or Gaussian.
2

ie p(x) = d--27 e 2 2.6

Most random processes in nature are Gaussian or have related Maxwell

distributions. Unfortunately turbulence is not, since skewness values are

not necessarily zero, ie., u' 2v' * 0 for instance. Turbulence then is the sum

of a large number of processes, but they are not quite independent.

Probability densities are used to establish a probabilistic description for

the instantaneous values of the data. They are shown below for a signal

x(t).

.. _

t

-co 0 +0

Probability distribution of x(t)
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p(x)

0 0+

Probability density of x(t)

The auto-correlation, or co-variance, describes the general dependence of

values of a property between one time and another and is defined as

R -= urn f x(t) x(t+t) dt 2.7

T- * 0

The auto-correlation is always a real-valued, even function with a

maximum at r = 0 and may have both positive and negative values so

that

Rx(-T) = RX(r) and Rx(0) > IR.(T)J for all T

9



Following are two examples, one for a pure sine wave, the other for

turbulence of variable frequency content.

RX

sine wave

j

RX Increasing
turbulence

scale

Thus, we can use the auto-correlation to separate coherent from random

data and get an idea of the energy-frequency content. The power

spectral density function GX(f) is the Fourier transform of the

auto-correlation function. It can also be determined by band-pass

filtering and RMS measurement since

10



S- f;xM ( df 2.8
0

The joint probability density may be defined as before, ie.

p(x'y) -urn li [ LrnT 2.9Ax-+O A IT-#w

when x and y are statistically independent.

p(x,y) = p(x) p(y) 2.10

Cross-correlation measurements can be made with or without time delay

R ()-lim I J(t) y(t+t) dt 2.11
T- -f 0

It is not necessarily an even function and Ry(r) max is not necessarily at

r = 0. But we can say RY(-=) = Ryx(r) Also

Rx(0)R y(0) 2t IRxy (r)12

1/2[Rx(0) + Ry (0)] > IRxy(r)

If Rxy = 0, then x(t) and y(t) are uncorrelated. If Rxy = 0 for all times, x(t)

and y(t) are statistically independent or, if the time average * 0 then R

= xi.

Examples are shown on the next page for frozen and decaying turbulence

convection.
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ydecay

no decay

time delay time delay

As we will see later, the cross-correlation is useful for the determination

of convection velocities and determining signal-to-noise ratios.

The cross-spectral density [Gxy(f)] is the Fourier transformation of cross-

" correlation. But since Rxy is not an even function, Gxy(f) is complex and

may be written as

Gy(f)= Cxy(f) -j Qxy(f) 2.12

Gxy(f) = IGxy(f)I e-i Oxy(f) 2.13

where

IG=i = Q xy 2.14

xy =tan 2.15
CXCxy

Typical variations of these parameters with frequency are shown in the

next figure. A useful relationship is

GxGy > IG.y12

We generally define the coherence function as

12

AfI
i * A.* ~ - > ' '



2 
IG (f) 12

YxY G (Gf (f S

When yxy 2 (f) = 0 at a given frequency, x(t) and y(t) are incoherent, ie.

uncorrelated. Both x(t) and y(t) are statistically independent if yxy 2 (f) = 0

for all frequencies.

IGxy (f)l mag

XY (f) phase

vf

Note also that the time delay r = ey(f)/2nf, so we can determine the time

delay as a function of frequency. This provides the relationship between

convection velocity and the turbulent scale.
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Section 3 Turbulence Measurement Requirements

Most of the measurements required for the definition of. turbulent flow

fields can be derived by considering the influence of turbulent

fluctuations on the overall momentum and energy balances. Consider

first the incompressible form of the streamwise momentum equation

which may be written as
au au auv a p + a a2  aU

'at ax -y az e ax \ax2  ay 2 -- az2  3.1

Now if we write u = U + V and noting that u'= Uu = 0
___ ___au au' 2

and that a(U + u') a (U2+ -+ 2 U ) = 2u a- + --

ax ax ax ax

we obtain
au au au au ap (a 2U a2U a2u

a ax ay az P ax kaxay az2/
U, ax O ay +~ -aX2 +a72+ air2 3.2

The last three additional terms have the units of stress and are commonly

known as the turbulent or Reynolds shear stresses. These additional

stresses are extremely important. If, for example, we have a pipe flow

where the velocity fluctuations are ±10% of the mean flow, then the

Reynolds stresses are of order .001pu 2 . Since the mean velocity gradient

in the pipe is of order u/d then the viscous stress is p(u/d). The ratio of

turbulent to viscous stress is therefore .00lud/g.. So that, for a pipe flow

with a Reynolds number of 100,000, the turbulent stress exceeds the

,* viscous stress by two orders of magnitude.

14



Thus, it can be seen that turbulent shear stresses are extremely

important. The mathematical difficulty in solving the equations of motion

for turbulent flow is that they are non-linear; ie.,. the turbulent

fluctuations cannot be superimposed on the mean flow without affecting

it. Equations for first order terms involve double correlations and so each

equation involves higher order terms. The problem is further

complicated by the fact that turbulent cross-correlations (stresses)

depend on the phase as well as the magnitude of the two fluctuations.

To determine the turbulent energy balance in a flow we need a

relationship for the time rate of change of the individual normal stresses

ie.
12-' 1 2_" 1 __-' 1 .

DLq D u' DIv' D'.Dt- D + +~ 3.3
Dt Dt Dt Dt

where

Dt ~t ax ay az

To determine this relationship we substitute u = u + u' in the equation of

motion and multiply each term by u'.

U_ .aThus au = + Ua- at at at
and

u u. u + U.2 aU 2 a ui u' u

ax ax ax ax

- U " -
_+ U aU + U.2 au' 3.4

Continuing in this manner and collecting terms we obtain

15
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Dt ---- U. - xU + UrU' u' ,-L U

Daay az) 3.

where the first three groups on the RHS represent the spatial transport of

turbulent energy by local pressure gradient fluctuations, the viscous

dissipation of turbulent kinetic energy and production terms ie. rate of

mean work against turbulence. The last group may be rewritten using

continuity as

-7- + + -
-(ax 3 ay~. az)

and so represents the spatial transport of u'2 /2 by turbulence. Thus, we

have a balance for the turbulence energy in a flow which involves

production, dissipation, and convection, where the production term

represents an extraction of energy from the mean flow.

*In boundary layer flows we can make the approximations

a --0' au au, andU>>V

az '5Xa y

so that the continuity and Navier Stokes equations reduce to the following

forms:

au + -v 0 3.6
ax ay

and
2au -a U a + a u a au' 3.7y = V x+"ay, ay - ax

,

16
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Since the normal mean momentum equation may be written as

T2 3.8
2

where + = const
+2

we obtain

U I + VO-- aU TT 'a;T ) 3.9
aX ay "ax ay2  ay ax

Thus, we can solve for U and V only if the turbulence terms are known

and/or can be modeled. Normally we may assume that (a/ax)(u72 -v' 2 ) is

negligible except near separation.

For turbulence modeling purposes, it is usual to divide the boundary

layer into two regions, an outer and inner layer. The outer layer contains

80% of the flow, the inner layer also contains the viscous sub-layer.

Mixing length models relate the local shear stress to a mean velocity

gradient by means of a turbulence length scale or mixing length

- U 7- 3.10

where for the inner region L = Kly with K1 = 0.4

However, in the viscous sub-layer close to the wall, we must account for

turbulence damping so a "damping factor" (A) is included such that

L - Kly[1 - exp (-A)i 3.11

where (A) is a strong function of local wall boundary conditions

17



1

ie. A=26v-"() 2 3.12

so that (A) approaches zero outside the sub-layer.

In the outer region it is usual to assume

-uv = K2 U-&*I au1 3.13

In locations where boundary layer edge intermittency is present we

multiply this expression by an intermittency factor

1 - erf[5({)0.78 ]
Y = 3.142

The major objection to the mixing length hypothesis is that it is based on

the local mean velocity gradient. But, we know that turbulent length

scales and lifetimes are many boundary layer thicknesses, so we cannot

assume that turbulence properties are uniquely related to local mean

profiles. We must account for mean flow history and turbulence

convection.

Other models relate the turbulent shear stress to turbulent kinetic energy

ie. -u'v' = kq 2, where k is taken to be 0.3. This assumed proportionality

once again has only limited validity. Along the axis of a pipe, for

example, the stress is zero but the turbulence energy is not. In practice.

therefore, only external boundary-layer flows can be predicted. It cannot

be applied to wakes, wall jets or natural-convection boundary layers

since, in these flows the shear stress changes sign whereas the turbulence

energy cannot.

18



Thus we need to determine the types of measurements which will be

required to help in turbulence modeling. As a first step, let us determine

the mean flow kinetic energy equation in boundary layer form. To

achieve this we must use u = u + u' and multiply by -U. So that for the

case of zero pressure gradient

au+ VUl =VaIU

ay 3.15

becomes

U U LY u'v y 0  3.16axayay ay
The first two terms represent the gain due to advection ie. mean energy

transport. The third and fourth terms represent the loss due to

turbulence production and the gain due to energy flux. In boundary

layer flow there is a loss of mean flow kinetic energy over most of the

layer except near the wall. The loss in the outer region is due to transfer

to the inner layer by means of the Reynolds stress gradient. For flows

with pressure gradient the term uD(u' 2 /2)/Dx, a term dropped in the

above derivation, cannot be neglected. So we can see that, in general, the

mean flow energy balance involves expressions for the rate of change of

turbulence kinetic energy and shear stress. Derivation of these
expressions will give an indicatio,, of the required measurements.

To derive the equation for the rate of change of turbulence kinetic energy

we insert u = u + u' in the boundary layer momentum equation, multiply

the result by u' and take the time average. This results in

19
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1-~ q2 aq 2  a q 2).1Dt x ay3.17

- V - -- v'(p* + q 2)] +

where we can see that the convection of turbulence energy by the mean

flow is the balance between the turbulence energy produced by the mean

motion working against the turbulence shear stress and the turbulence

energy diffusion and viscous dissipation (E).

Finally, the rate of change of Reynolds shear stress may be derived by

inserting u = u + u' into the boundary layer momentum equation, and

multiplying the result by v' and taking the time average. Thus we obtain:

: _[ .2_aU+ _L U.2 - Ui + -= I3T1
Dt a7y7yi 7ay ax]'

+ P. Lu + - ] + Ir [uVav- + vzVuj

where the rate of change of Reynolds shear stress is the balance between

shear stress diffusion, pressure diffusion, pressure scrambling and

viscous dissipation.

If heat transfer is present, by analogy with the mean enthalpy equation,

we determine that

__t k- k- e'v'e'- [u+ e- 1, ~] :

20
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where we can see that the rate of change of enthalpy function depends on

the conductive diffusion, production and turbulent transport respectively.

By analogy with the Reynolds shear stress equation we can derive

DvTE- -  I E) p' k V2)+V ,2V

x ay - ax a

(a + ax /

In this case we have two sets of molecular dissipative terms and two sets

of production terms.

Eddy conductivity may be expressed as

kr = PCP 3.21
ae

so that the turbulent Prandtl number becomes

ae

PrT - = U a 
.

ay

' In most cases the turbulent Prandtl number is assumed equal to unit),

inferring that heat and momentum are transferred by the same

processes. However, measurements (ref. 4) indicate significant variations

can occur across shear layers. A curve fit to these data suggests the form

21



Pr~r= 0.95[l1-O.5(.G)J 3.23

Now, all these previous equations express the rate of change not the

magnitude of the turbulence kinetic energy, shear stress and turbulent

heat transfer. The local magnitude depends on the integral along th

length of a streamline. To get some idea of the length scales of turbule'it

motion, we can study spatial and space-time correlations.

From the turbulence modeling viewpoint, information on the turbulence

scales and lifetimes are also of crucial importance. Since turbulent flows

vary not only in time but also in space, their investigation must involve

an examination of both the spatial and temporal statistical structure.

Space-time correlations can make a contribution to this study since they

give evidence of the heredity and structure of turbulence, as well as

values of the convection velocities of the vorticity and entropy modes

compared with the average mass transport velocities. Examples of bot,

auto and space-time correlations in a compressible turbulent boundary

layer are given in figs. 3.1 and 3.2. These data were obtained on a

cone-ogive-cylinder model in the Ames 3.5-ft. wind tunnel (ref. 5). Fi 2.

3.1 shows the auto-correlation of the fluctuating signals on the cvlindrical

portion of the model 176 cm from the cone apex, at two positions in the

turbulent boundary layer and in the far field. It can be seen that there is

a marked variation of energy distribution with frequency across the

boundary layer and that, as expected, the far field contains

proportionately much less energy in the high wave number range thmi

the wall region. The results of a series of filtered (4 k!lz

22



cross-correlation measurements at several wire separation distances in

the boundary layer are shown in fig. 3.2. It can be seen that each

cross-correlation curve reaches a maximum at a non-zero value of the

time delay, clearly indicating the presence of convection. The amplitude

of this maximum is a function of the wire separation distance. A

convection velocity of these disturbances may be determined from the

time delay at which the maximum of a particular cross-correlation occurs.

The peaks of the cross-correlation obtained for various values of wire

separation distance represent the auto-correlation in a reference frame

moving with disturbances. They are, therefore, a measure of the lifetime

of the disturbance pattern as it is swept along with the mean flow. The

long turbulence lifetimes which can be inferred from these space-time

correlation measurements (ref. 5) illustrate a major objection to

turbulence models based on local mean flow gradients. It cannot be

assumed that turbulence in uniquely related to local conditions, and flow

history must be considered, especially when attempting to calculate

non-equilibrium flows.

To conclude, we can list some of the measurement requirements for the

definition of turbulent flow fields. These requirements include:

1) Measurements of the spatial and temporal distributions of turbulence,

kinetic energy and shear stress.

2) Determination of the rates at which these properties are produced,

transported and dissipated.

3) Determination, from spectra or correlation measurements, of the
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contribution of different length scales to the turbulence kinetic energy

and shear stresses.

4) The rate at which Reynolds stress and turbulence kinetic energy are

transferred from one range of eddy sizes to another.

5) Components of the viscous dissipation from point time histories,

assuming Taylor's hypothesis holds, ie.

(uY... 2 (a U. 2  324
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Fig. 3.1 Auto-correlations across a compressible
turbulent bundary layer (ref. 5).
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Fig. 3.2 Space-time cross-correlation measurements
in a compressible turbulent boundary layer (ref. 5).
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Section 4 The Measurement of Turbulent Fluctuations

A hot-wire can be assumed to be a cylinder placed in a flow field for the

purpose of making certain types of flow field measurements. The wire is

, assumed to have length L and a diameter d. Furthermore, we assume

5that the wire temperature is Tw and if we take a heat balance we note

that

W-Qr- Qc-Hw= 0 4.1

where W = the energy (electrical) put into the wire.

Qr = Heat loss due to radiation.

Qc = Heat loss due to conduction.

Hw = Heat loss due to convection.

If we assume that there is no heat loss due to radiation, or conduction to

the supports, then equation 4.1 can be expressed as W = Hw. In

incompressible flow numerous hot-wire heat transfer studies show that

Nu = Xd/kf = 0.42Pr° ' 2 + 0.57Pr°' 33Re ° ' 5  4.2

Equation (4.2) is applicable in air and diatomic gases when 0.1 < Re <

1000, where Re = pgud/ig and Pr, p, g. are evaluated at the film

temperature TF = (Tw + Tg)/2. Free convection effects may be neglected

if Gr x Pr < 10-4 and Re > 0.5. For a 5-micron wire, in high-speed airflows,

Gr x Pr 106 and the Reynolds number based on wire diameter is

'4 generally 0.5.

Since, the heat transferred from a wire of length L is XktdL(Tw - Tg) = 12Rw,

we may rewrite equation 4.2 as
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nkfL(Tw - Tg)[O.42Pr 0 .2 + O.57Pr0 '3 Re0 '5  1 2 Rw 4.3

Now, Rw Rofi + a(Tw - To) + y(Tw - To) 2 + .. ]and neglecting higher

Order terms, Tw - Tg = (Rw - Rg)IaRo so that

I2 Rw -Tr irL(Rw -R,,) [0.42Pr0 '2 + 0.57Pr0 .33Re0 511 4.4

ie 2R w~ A A +B AT 4.5
Rw-Rt

where

A - 0.42 A;- Pr0  4.6

and

B - 0.57 -T1f PrO0 3 3 (pd) .5  4.7

We can determine A and B experimentally by plotting 12 VS. 4WFU for

constant electrical resistance as shown below.

12 Soe Rw -Rg B

C 
Rw

Intercept =Rw -R g A 7
Rw

Now let us consider the unsteady heat transfer from a wire in a turbulent

flow field where we have u =u+ u', Rw R w + rw. If the sensor is made
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part of the constant current circuit system shown on the next page. If we

assume u'/u o 1 so that rw/(Rw Rg) < 1 equation 4.5 may then be

written as

I'R w I +) ) =wA+BV T +1I 4.8
TRw IRaW- Rw -R R -'R2

Constant Current System
Rc

V Rwire

Rc >> Rwire so that I = Rc + Rwire R-7

or since
I2 .w

= A+ B 4.9

we have

-(Rw- R - 2U

so that

e = Irw =- - 2 U 4.10

ie

vwh= SI

where
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( ,w- R )2 Bff
2IR

and e = -su. Equation 4.10 applies only in absence of thermal inertia of

the wire, cooling effects of the supports and non-uniform velocity

distribution along the wire.

Let us first consider the effects of thermal inertia and rewrite the energy

balance to account for the heat capacity of the entire wire, Cw, as

2 rd2_.s dTw 41
I Rw = (Rw-R)(A+Bt)+PWCW "L - 4.114 d

where cW is the specific heat of the wire.

Perturbing this equation and cancelling the steady state terms gives

I2 rw = (A + BVU )rw + (Rw-Rg)B,/Au + -RW drw 4.12

where

C w cW T'd-  L 4.13
4

or

drw + I r = ¢(t) 4.14
dIt M

where

M= W 4.15
R(A+BAT)-I 2 ]

and
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O(t) = cxgRg(Rw-Rg)B-iT 4.16
2Cw

But from the mean heat balance

A + BA/"- 1-2 Rg 12 4.17
Rw-Rg

therefore

M "- Cw(Rw-Rg) 4.18
12 cgRg

The solution of equation 4.14 is obtained as follows. Let (prw)= X(t) and

j3rw = X(t)dt

drw•--+r -X(t) 4.19" dt dt

I dO I x(t) (tO log t

dt =M

A w fte O)t) e-( dt 4.20

tft<;) exP [_-L t-t;)]dt

Thus if u(t) = u*ei where u* represents a velocity amplitude, then

O(t) - O*ei(wtt) 4.21

where

0* ocRo(Rw- Rg) Bv ,,'uf u* (Rw - Rg) 2 B. /-U*
= 2 4.22

CW 2" MI2Rg 2U4
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Equation 4.20 then gives

rw = * M e M rw* e i( A'-')  4.23

where
- *

rw* 0*

and
)4 - tartt(+wM)

If we take e = -su where s is the velocity sensitivity then we can see that

thermal inertia affects both the amplitude and phase of the hot-wire

response ie.

s2 2 4.24

where NTI denotes no thermal inertia. This shows that both phase shifts

and amplitude variations are functions of the frequency of the velocity

fluctuation. M is defined as the time constant and coo = 1/M is called the

roll-off frequency. The time constant is a strong function of wire

diameter and mass flux. Take, for example, a 5 micron tungsten wire in a

turbulent flow of 30 m/sec, with Tw - Tg = 115'C, Tg = 288°K, and I = 76

mA, the wire time constant is approximately 3 x 10-4 sec and the signal

amplitude at 250 Hz is

S 1 1 1

s v'1 + 9 x 10"1(2,rx250)2 , . 1.1055

so that the signal has already dropped down 10% at very low frequencies.

The signal phase angle, which may be calculated from
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- tan 1 (-oM) = tan'(2n x 250 x 3x10 4 ) = tan-'(0.47) 4.25

shows that there is a 25-deg. phase lag at 250 Hz. Thus it is crucial that

we compensate for these effects.

A typical compensation circuit is shown below

C Req = Ri Zc
Ri+Zc

V I R2 Vo

An analysis of this circuit gives

"-vI -- 4.26
Req+ R2

'c Vi R2 V - V 4.27

Req+R2 Req RiZc
R2 RIR2+R2Zc

Now again assumeu=iU+u' , Rw=Rw +rw , Tw-Tw+tw and since

Tw -Ti = Rw 4.28

so that rw = Roatw. On substitution in equation 4.11 we obtain

I2Rw+I2rw=(Rw+rw-Rg)[A+B3/ u'( 1+ 1 )]1 4.29

C , drw
+ cgRg dt

Since

2-W ( B/ 4.30
I~~~U R=(+'U(Rw -RO)
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neglecting higher order terms we obtain
2 r C w drw

I~r (A + BA)rw + (Rw-R)BvIj- + 4.312 aRg dt

where the wire phase and amplitude characteristics may be written as

- Ro (Rw -Rg) BOUT u
0(t) = 4.32

and

Cw
M =4.33

aRo [I2+ (A + BA')]

Or, since

A + B,/'- I= Rg 12
Rw-Rj

M = Cw (Fw-Rg) 434
,- CC I 2Ro R4

Now the relationship between the circuit input and output voltages may

be expressed as

Vo RiR2+R2Zc R2 [ Ri+Zc 1
Vi RiR2 + R2Zc+RiZc Ri [c+R2 + I

r RIR--I + R i R i C

R2 I ZC 1 R2 r + jWRiC 1
Ri I .Rz ]R2 Ri 1 .R+ 2 + C
RI + w1 R+ C2 e j ra f ! (wRiC)4

Ri 2ZR2
2: 2 2 2 i1 i R

1+ /)+ e 1+ 4.35

so that
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a 2 2 2
Vo R2 I+ W Ric 4.36

(1+ i-i +

Clearly then we can match for the hot-wire amplitude roll off if,

1+w Ri 4.37

R 2 2 22'/(~~C R2"oRC

Now defining o = 1/RiC and o= 1/M for the hot-wire, for amplitude

compensation we have

I 0A 2 WO) 4.38

(IR R+w

*and the circuit phase angle

O I + R2 o1---

Ri W
'= 4.39

1
R2wI1 + R'"2+ W)(Ri\oRiL WO

R2
Ri

for hot-wire phase correction.

In an actual compensating circuit, the capacitance must be a variable as

the wire time constant depends on both overheat and mass flow (pu).

Usually R2 v R1 (say 1/1000) so that

,. ' 34
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at 0 Vo R2
Ti Ri- 4.40

Vo
and forw-*** Ti

The point on the curve where VO/Vi flattens off is co/wo =-R2/R1 or w

= /CR2 so that variable capacitance provides for adjustable limiting

frequency compensation but the overall gain is fixed at R2/R 1. For

variable R i. the frequency at which compensation is correct is fixed at

Wcomp = I/CR2 and the overall gain changes with Ri. Since it can be shown

that

dV iRZ(+(AJ)2I+Ri

41' is maximum when

1 L R2 (.)2 0 4.41Ri Ri o

That is when

= ? 1  4.42

3R
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Typical circuit response curves for R2/Ri 1/1000 are shown below

along with the wire circuit output.

A I6 db/octaveA-" [roll off

Combined Response

_______10___ t 1.0

AO

I .001
nl 1.0 0=0 (0o

R2o R

Ri 2L

2 (

We note that it is possible to correct amplitude to higher frequency than

phase. The effect of time-constant error on the hot-wire output can also

be determined. For the circuit we may write

V.= G+ RI+(7A

Jj ,r IIIIIII
G = gain factor and 0oA = set for MA
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Since the wire output may be written as

V/w 1I4=V 4.44

where M o = 1/ 0 o

G, 2 4.45

for co-- 0 Vo/Vf-4 G

00 -+oo Vo/Vf- G 0)o/0)A

We can see from figure 4.1, that as long as coo/0)A is within ± 30% of unity,

the response is flat above co/o = 5. So, apart from signals of frequencies

less than 5w)0 , we can account for errors due to incorrect circuit

time-constant settings (woA) by multiplying the signal by 0)A/o.

Alternatively, we can write

e02= fOF(f) df 4.46

where eo is the uncompensated wire output and F(f) is the power

spectrum ie. the signal amplitude squared vs. frequency. The

compensated signal is then

comp F(f)(1 C ) df + Mc .o2F(f) df 4.47
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The true signal would therefore be

*e F)( MT) df T +Mf 1 2 F(f) df 4.48eT 00

eliminating

f 2F(f) df

we have

=cm-e.-T 1 4.419
2e_-e. M 2

which may be rewritten as

e HT e2 (e - e2m

e1 2  e 2 - 2  4.50ecom, com e, (T 0.

This correction is acceptable when MIT and Mc differ by less than 30

percent. __ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _

.41.0

4) 0

0

0.1 1.0 10.0

(00

Fig. 4.1 Hot-wire compensating circuit response.
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Now let us turn our attention to the constant temperature method (rw--

0) and consider a hot-wire probe in the circuit shown below.

transconductance
+ i dlout

_ , .... Power
A e Amplifier

dI = i = - gtrdE = - gtrIrw

Now assuming I = I + i, u = 5 + u' and substituting in equation 4.5,

neglecting terms in rw, we obtain

11k+ 2i!~w -(Rw-Rg)(A +BU) + (Rw-Rj)B/' U 4.512U

so that

j. -I - 4.52

and e = iRw = S U. Where the constant temperature sensitivity is given

by
(R~w - Rt)B,/"u--

SOt , Y 4.53
4Tu

We also see that the constant temperature sensitivity is related to the

constant current sensitivity (s) by
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sCt = R s 4.542 (Rw - RO)

so that for Rw/Rg > 3/2, set < s, ie. at low overheats, constant temperature

operation is less sensitive than constant current.

In order to study dynamic behavior, we must consider small changes

(lags) in Rw = Rw + rw. Neglecting higher order terms in i, rw and u', we see

from the thermal equilibrium equation that

12 rw + 2i1Fw = (A + BV-T)rw + (Rw - Rg) B' + CW d- 4.55

using Tw = rw/alo and substituting for gtr we obtain
'idi ccR, -_1 1Fwg, iz (1r1'Ro(Rw - Rg) -d A+B+2B'/'f US+ . (A + B- - + 22:w~) i = c Cgt2-')

Cw + Cw

4.56

solving this equation as previously, we determine that
Met =CW 4.57

M Ro (A + Bv- -_ T2 + 2 2 wgtr) 5

or
~M

Mct = 4.58

1+ 2[Rw - R gtr

ie. Mct (( M.

Typically, Rw/Rg = 2, Rw = 10 Q and gtr = 10 mhos, so that Mct = 1/200 M.

However, we also note that the response depends on (Rw - Rg)/Rg, so that

when Rw - Rg -* 0 Mct - M. Thus, the constant temperature

anemometer frequency response is poor at low overheat (ref. 6).
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The phase shift is also a strong function of overheat and mass flow rate.

At low overheat, phase shifts in the feed back amplifier can lead to large

bridge oscillations. To avoid this we need flat amplifier response to at

least twice the desired compensation frequency. Bridge stability also

depends on the amount of out of balance which is a function of Rw - Rg.

Typically for a 5ptm tungsten wire at high overheat, -3db relative

amplitude can exceed 100 kHz, but with a phase lag of 60 deg.

Now let us consider the effects of conduction to the wire supports.

Generally, hot-wire supports are much thicker than the wire itself for

reasons of strength so that, since their relative resistance is low, they will

not be heated appreciably by the electric current. We can determine the

hot-wire temperature distribution and determine the effects of heat

conduction to the supports by rewriting the energy balance as

2 d2Tw

e LA I2 Rw = (Rw-R )(A+Bv'4) _d- kw x2 4.59

where kw is the thermal conductivity of the wire. Now since Rw- Rg =

ctRo (Tw - Tg) we obtain

d2 (Tw-Tg) x Ro(A + B,/-1 21 12 Rg

dx 2  wd2 kw (Tw -Tg) + d2 k 0 4.60d d-- kw -- z w
4 4

where

Tw-Tg =0 for x = t -2
d (Tw -Tg) =0 at x=0

dx
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The solution of this equation is
2 R

Tw-T R" cosh (x/Le) 4.61
(x (A + Bv/ -I2) cosh (x/2L')J

where Lc, the cold length ie. the length effectively cooled by the end

supports, is a function of wire diameter f(d) and may be written as

L= 1 wk 4.62
2 c(A + B/U- 12 )

and the effective wire length is equal to I 2(L). With some

approximations equation 4.61 may be written as

Tw-Tg cosh x/Lc

Tw-Tg cosh L /2L4

and examples are shown below.

1.0 2L) *

Tw -Tg

cc~ 5

0"0 .2 .4 .6 .8 1.0

Fig. 4.2 Hot-wire temperature distributions.

From this figure we can see that we must keep L/2(L c ) 2! 5 ie. no more

than about 20 percent of the wire cooled, no more than 10 percent at

h m42



each end. For typical operating conditions this means Lid - 100 to 200

for platinum-rhodium wires and still higher for tungsten since

kw(tungsten) = 2.5 kw(platinum).

The effects of end losses on dynamic response are very complex. They

may be summarized as follows. It is impossible to correctly compensate

with simple RC circuits since the phase shift is not constant along the

wire. However deviations are small (within 2 percent for L/2(L ) > 3) if

compensation is correct for (o = 0 and -0. The wire time constant

decreases as Lid increases, but there is a limit to L/d due to strength and

non-uniform velocity distribution along the wire which we will consider

next.

Consider the case of uniform flow U and turbulence intensity u . Since

the wire voltage
L

e =KJ u1(x)dx2  4.64
0

then if ul = constant,
2= 2 2 2  4.65

e =K LuII

This would also be the case in non-uniform flow if we measure a true

"point" value. Now if R2(x 2 ) is the lateral correlation coefficient

distribution along the wire then, when the two rms levels u' 1 (x 2) and

u' (x 2 + a) are equal,
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.1

R 2 u,(x 2) u,(x 2+a) u,(x 2) u,(x 2 +a)

Rz(x2 ) = uj(X2) ui(x 2 +a) ui(x2) 2

But if u' 1 (x 2 ) is not constant, the measured mean square voltage output is

e= KZ Lul(x 2 )dxz]4

which, if Jf(x 2) = Jf(x 2) can be written as

L L
e 2=2f fU1 (X2) ul(x2) dx 2 dx2 4.68

In homogeneous turbulence

u u(x) X2) (x'2)

so we have
i ..-:3 L L

em- K U15 f Rz(X)(X 2-x 2 ) dx 2 dx'2  4.69
0 0

ie

T1 (x-2) = R2(X)U 4.70
1 (x z)

Now, substituting in equation 4.68, and defining s = (x2 -x2') we obtain

- _-~~ 2K 2U2 LL- ,.--2.7
u72= fL (L - s)R2ds 4.71

comparing e2 and era2 given by both equation 4.65 and 4.71 we see that

Se2 2M 4.72
e2

where

1 2 f (L -s)R2ds 4.73
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Since R2 _ 1.0, the turbulent energy measured with a long wire is always

smaller than the true point value. So, to correct em2, we need to know the

lateral cross-correlation coefficient. Now, if the wire length far exceeds

the lateral integral scale,

A =f RZ dx Z ) 4.74
0

then

;2 u2(-A -A) 4.75

where

A' =f x 2Rzdx 2
0

(the first moment of R2) so that

-L= 2 ( 2Ad= 21[2 &2A 22 4.76
I2e L2 L(A 2 )2 L 2

where

(A2)2

depends on the shape of the correlation curve. When
L-L " . -L0 so that eM2-+O

A12

ie. no turbulence would measured at all if L = *

The effects of L, d, and L/d can be summarized as follows. For a small

time- constant, ie. high-frequency compensation, we require a small wire

diameter. For a long uniform wire temperature and high-frequency
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response, we require L/d > 200. Decreased wire diameter increases

signal/noise ratio, but decreases strength and large L/d probes give poor

response in a variable field. However, small L/d probes lead to adverse

aerodynamic interference effects. So we can see that probe design must

be a compromise.

The effects of mean fluid temperature changes can be assessed as follows.

Consider the energy balance

12 Rw
=Rw . A(Tj) + BVu- 4.77

Rw- Rg

-.' where A = f(Tg) whereas B is generally constant provided Tw is adjusted
to keep Tw/Tg constant. But the turbulence measurements are

independent of A since

I' Rw rw BVI U 4.78
*: (Rw- R) 2U

so that mean temperature changes do not effect hot-wire turbulence

measurements. The primary effect of mean flow temperature changes on

the wire calibrations are shown in fig. 4.3.
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Iinc Tg

Nu 0

TW,T-- =constant
Tg

Fig. 4.3 Effect of ambient temperature change on hot-wire calibration

Finally, let us consider the effects of large turbulence fluctuations and the

limitations they impose on our earlier assumptions. In such cases the

effective velocity may be written as
2 3 2 U2

r I U1 I U1
2 1 U~I U 2

11+- u+ 3  +U... 4.79

If we time average, then the measured velocity is given by

82 4 t 2  l 3  8U22u 1 3 U1 u

[ l + I 2"+ 3

= 2 2 2
". m, U [I 4 +z 2 8 4 4.81

So if the fluctuations are large, the measurement is a function of u. U,

and u u2 plus higher order terms. So we must correct the mean

measurements. Neglecting higher order terms we have

Us zU [ 1 !2 U 2
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In isotropic flows u1
2 = u2

2 so that ua > t Now the hot-wire

incas > actuai.Nwtehtwr

response to turbulent fluctuations may be written as

12 Rw LU 2
A~ +_ _V 1 :1 1. 4.82

Rw- R& 2 u T u2

putting Rw = Rw + rw where rw is not <( Rw. We obtain

12 (Rw+rw) = (A + BIT )(Rw-Rg+rw) + B171(Rw-Rg+rw) u* 4.83

where
2+ 2+ 2

1 U i 1 1 3UU 2
U* = _ -1 4.84

2:a 8;l 4U 2  6u 3 8 U3

averaging we obtain

I2Rw = (A + B,/2)(Rw-Rg) + B/'T (Rw-Rg)U * + B/U urw 4.85

Now for linearized theory

I2 w~i= (A + BI4)( wli- R ) 4.86

so that from equations 4.83, 4.85 and 4.86 we obtain
2 (Rw 1j Rg) B2  -- 4.87

e'2 2 IZw = (Rw - R g)z  2ni1-;6U

According to linearized theory, equation 4.10, we determine that

Rw,Rg ]U 4.88
e2 = 12Ru 4 U 

8in

1U 2 .,2Rw Rg 2

4 U2) U( act Rw R ) [i-¢(ul'u2)]  4.689

or after further calculation

12 _ 2(u 4.90

uin act
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where y(upu 2 ) is a function of Un' u 2 m I UlnU 2 m. So that, in highly

turbulent environments, what is actually measured is not the u,

component alone but a mixture. To measure ul we must not only know

u2 but also the higher order correlations which are not usually known for

non isotropic turbulent flows. We may conclude that the correct

measurement of turbulence of high intensity is practically impossible

with a hot-wire. But, if errors of 10-20% are accepted, it is permissible to

use linearized theory up to turbulence intensities of 20-25%. This covers

a large range of flows as the table below indicates. Errors due to high

turbulence and resulting directional intermittency are discussed in ref. 7.

Table 1

Flow Type Turbulence Intensity

Wind Tunnel (poor) 0.1 - 0.5%

Wind Tunnel (good) < 0.05%

Turbulent Jet 30 - 60%

Kdirmin Vortex Street 5 - 15%

Turbulent Boundary Layer 4 -10%

Turbulent Wake 2- 5%

Screen Turbulence (nearly isentropic) 0.3 - 2%

The measurement of turbulence characteristics with a hot-wire

anemometer may be achieved as follows. Consider the response of the

hot wires designated 0, 1 and II shown in the flow on the folltwing page.
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U0I II

U,

V 
0

NU, sin

V=U sin~sinO

For thermal equilibrium we may write

eo  (S )ou 1  4.91

e, = - (Sl)Iu 1 - (s2 )IU 2  4.92

eu = - (s)iiu1 + (s2)iiu 2  4.93

Now, if we use an X array with identical wires or make the sensitivities

equal by adjusting the individual currents, we get

(sI) I = (sl) n and (s2)I = (sI)iI

if'0 1 =02 = 45 deg. then s 1 =s 2 =s, so that ul, U2 and uIu 2 may be

obtained from

e2= (e )2) 4 su2  = 4 S2 U2

- ) 2 = _S 2  = 4S 2 U2  4.94
D I2 2 2

and 12 e 4 2 . 2 4 s~ 2u
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wher%,

-l 0 - const, V - const 4.95

and

aE j 4.96

The calibration sensitivities can be determined as follows. Since

aE aE /av-V "gg/ g4.97

and velocity component resolution shows that

ax deaV = Ut [sin 0cos eo- + cos o sine] 4.98

If the wire is at 45 deg. to the flow then

a "U 4.99

and

-2I = lE 4.100s v I U- u1 at U u- const

so calibration is relatively straightforward.

Alternatively, uu 2 may be obtained by measuring the correlation factor

between eS and eD ie.

RA =RB~we)G GB - G G'F
A RA, A A ABD -4 s ' 1U2

where GA and GB are the anemometer gains. So that
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RA4 4.101

To determine the cross-correlation coefficient of u1 we put two wires at

points A and B, so we have

eA = (s )A(ul)A 4.102

and

e= (s )B(Ul)B 4.103

The cross-correlation of u1 can then be calculated from

(eA+ e) 2 - (eA- e) 2  4 eAe 2 (sl)A(sl )(ul)A(Ul)B 4.104

(e-,) 2 (,-) 2  2( 2 S ) () 2 + (S)2(U)2
,

If we adjust eA2  e 2  ie. e eA I e a = e-" , then the

cross-correlation coefficient reduces to

eeB e; ~e

where ' denotes RMS values ie.

R eAeB = (ul)A(ul) B = (Ul)A(U1) B (ul)A(ul) B 4.105

We can determine the Reynolds shear stress coefficient
. UlU 2

uiu 2

from

e2 2 42 TSI e I - 4s Z =u 4.106
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So we do not need to calibrate the probes.

To determine the space-time correlation of the Reynolds shear stress

(U1 U2 )(ul U2 ) = ut2 ut 2  4.107
AA B A B

we can use two hot-wire X probes and measure the correlation function

between

eDA (e - e ) "A~l
1  A A 4.108

eDB (eiB- eIi = 2SBU 12 B

ie.

2( eD) (eDA- eDB) 4 eD _______ A_ 12_
4.109

(eDA. eD)+ (eD - eDB) 2 (eDA+ eDJ 1A2 .2B

If we adjust e2  e 2  ee &e 2 = 2  thenDiA DBi, L -DA B DA D

RU 1 2U 1 2B = eDAeD. = eDAeDB  eDAeD 4.110
A B 2 e 2  ee

DA D DAD B

so that

U1 2 AU 1 2 B  U1 2 U 1 2 B  U 1 2 U 1 2 BRu 2 u 2 = A B 4.111

A B u2 U2 B  U
A U A 12 B

Triple-point correlation measurements determine the kinematic diffusion

of turbulent energy. Terms such as

U2 U
12

may be obtained from an X wire when s,= S2 = s as follows, with
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A 2 = (eI + el)2 = 4s 2 u 1 2 and B= e - e,, = 2su 2

then

(A + B)' - (A - B) 4AB 2 s3 u-- 2  4.112
(A2+B) 2 + (A 2 -B) 2(A+B) S u+s 2

42+

If we adjust A -B, then A ' B =A =B, so that
U 2

R= - 4.113u': u'2

or we can measure the correlation factor

(eA+ es) - (eA- e.) 2

so that

A, RA B  4.114i 2 s 3 TB = GAGB RA 13 (awss) :' RA B, 2s3 = 4.I1
2s 3

Then divide by say s3u '3 to remove the wire sensitivity. Other

components eg.

U3& U 2

may be obtained in a similar manner.

The space-time triple point correlations can be obtained from two X wires

at two different points in the flow. Defining A and B as

A = e 2 = e 2 - e2 - S2 U
A IA HA A A

4.115
B = e2 = e2 - e2 = S2 U U2

B IB IIB B IB B

then
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(ut) (u 2
R(x,t) A A () (U2) (Ul) and (Uz)(Ul)A(Ul)d 4.116

(u1)'2 (U1) 2ADB A A D
A A

Flatness factors, which give an indication of the extent of turbulent

intermittency, are defined as

U '

V 4  W 4

-Tv & -Tw
V.4 W.4

The turbulence intermittency may be determined from
4 3.5 3.5
Tu Tv Tw

Longitudinal microscale may be defined, using the auto-correlation RW , as

2u0

'A 21- 1 .1
(--ul)x, r**(xo'o"o xi-- 0 4.118

for steady homogeneous turbulence only. Since for steady homogeneous

turbulence

X1 2 2

Rn(x10,0.0) ' 1 - X,(,,as r - 0

Now invoking Taylor's hypothesis x = u0t

= 1

where Xt is defined by
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t
R,1 (0,0,0,t) -I 1-- as t- 0

2~)ie t  -a \ 4.1 19

Similarly, we may measure the lateral microscales defined as

'A 2 4.120

xyx

and

X3 (a) 2  4.121

We can also measure terms such as

(1)2

which appear in the equation for the turbulent dissipation (e), by placing

two wires a distance x2 apart to obtain

[(ud)A - (u 1) 3] 2

With a differentiation circuit, which will be described later, we can also

obtain

aut)2

and in a similar manner we may measure
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When the electronic noise is large enough to influence measurements

made with a hot-wire anemometer, the noise must be substracted from

the anemometer output to obtain the correct net result. To make this

correction, the hot-wire equation can be expressed (ref. 8) as

(e'+ e,) = s (u'+ u") 4.122
GE r

where the gain is G and the noise is denoted by the subscript n. The level

of the electronic noise can be approximately obtained by covering the

hot-wire probe and measuring e'n and En. Under this condition, equation

4.122 can be expressed as

s (--) 4.123

Forming the mean square of equation 4.122 and assuming that there is no

correlation between the electronic noise and the velocity fluctuations we

have
(e' + e'.. = 2 (-L iu'.z

GZEZU = +z u + U 4.124
G2E2  S2  ) 4.2

So that, the velocity fluctuation in the flow is

(u)= 2 (e+ e )2  , ,2 4.125

U S 2 G2E2  F

Substituting equation 4.123 into 4.125 results in

() = (GE2 ()2G"2E 4.126
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A value is now required for the quantity un 2/u 2 in equation 4.126. From

the calibration of the hot-wire, we have

log E = A log U + log B 4.127

which can be written as follows by noting that A = S

1
S) S  

4.128

Then using equation 4.128 un/u becomes

1
i n E) 4.129

Substituting equation 4.129 into 4.126 gives the final result2u.)2
(41 = S2G2EE 2

or in terms of the rms voltages measured with an rms meter

.r 2 2- - -2
(U) (EQs e.S2G2 2E S 2  4.131G EG, n E n

where the subscript T refers to the total rms measurement.

The effect of noise on correlation measurements may be assessed as

follows. Let the noise be a and b on two anemometer outputs v, and v,,

then the cross-correlation function may be written as
R(v i + a)(v2 + b) VV .3
R = *= 4.132

sincev a =v 2 b=v b =v 2 a =ab= 0
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Ifwewrite = El & =-=E 2  he
a2  b2

RTrue = 1(1 + E1 )(l 2]4 3

So we can see that the measured correlation increases with increased

signal to noise ratio.
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Section 5 The Hot-Wire in Compressible Flow

We shall see that hot-wire fluctuation measurements require detailed

knowledge of the steady-state heat loss laws. Wire response to mean flow

is well defined for the incompressible case. For isothermal,

incompressible flow, a hot-wire responds only to velocity changes and the

output can be correlated quite well over a wide range of Reynolds

numbers. Fig. 5.1 is a summary plot of heat transfer measurements for

circular cylinders in subsonic, continuum flow.
A

However, at high speeds, wire response is more complex since wire

recovery factor is a function of both Mach number and Knudsen number.

4i Fig. 5.2 was prepared as a guide to the experimental variation of Nusselt

number as a function of Reynolds number and Mach number. The sensor

output is reasonably well behaved for supersonic Mach numbers as

indicated by the lower curve of fig. 5.2. However, the output is Mach

number dependent in the transonic range particularly at low Reynolds

number. It will be seen that the slope of the Nu vs. Re relationship is of

particular concern in turbulence measurements. Fig. 5.3 shows the

measured exponents as a function of Reynolds and Mach numbers for

several investigations. At high Mach numbers, the exponent is seen to

•P ,vary monotonically between the free molecular and continuum values.
For an insulated wire, the slope begins to deviate from the continuum

value at wire Reynolds numbers below 200. In continuum flow, wire

recovery temperature is a function of Mach number since there is a

changing relationship between frictional and compression effects. But, as
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Mach number increases, these effects cancel so that the recovery

temperature ratio becomes approximately constant at supersonic Mach

numbers (fig. 5.4). In the transitional regime, measurements indicate

that at Knudsen numbers of about 0.1 the recovery temperature begins to

rise above the high Reynolds number value. Thus the recovery

temperature can range from below to above total temperature.

Measurements have been made over the complete range range from

continuum to free molecular Knudsen numbers. These results are

summarized in fig. 5.5. The direct effect of wire Reynolds number on

wire recovery temperature in supersonic flow can be determined from

fig. 5.6.

10 3

Z 102

4)
.0

0 101

S100

10 -1 i i,

10-2 10-1 100 101 102 101 10 4  10 5

Reynolds Number, Re

Fig. 5.1 Summary of heat loss from circular cylinders in cross-flow
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I . .2

z 10 -2 .40 .6
.8

M > 1.0
10-1

10 -2 10 -1 10 0 10 1 10 2 10 3 10 4 10 1
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Fig. 5.2 Empirical correlations of hot-wire heat transfer
at low Reynolds number.

1.0
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0.6
d Nu0
d Re 0 0.4 Reo

0.2

0 1 I 1 1 I I I

0.2 0.5 1 2 5 10 20 50 100 200 500 1000

Reynolds number, Re0

Fig. 5.3 Slope of Nusselt number - Reynolds number relation
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Fig. 5.4 Recovery temperature variations.

1.1 Theoretical limit for free-molecular flow
I 1.0
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Fig. 5.5 Normalized variation of recovery temperature
with Knudsen number.
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Fig. 5.6 Variations of recovery temperature in supersonic flow (ref. 1).

The derivation of the general fluctuation sensitivities of a hot-wire

anemometer involves the perturbation of the steady-state heat transfer

law and expressing the result in measurable electrical and fluid flow

properties. In compressible flow, dimensional analysis and test data

imply that

Nu= Xd/k = f(Re, M, 0) 0 =Tw/Tt 5.1

and, assuming that the electrical energy input to the wire equals the heat

loss due to convection, we may write

W = 1 2 R = NutntktL(Tw - ilTt) 5.2

Consider first the electrical properties where

dW/W = 2 d In I + d In Rw 5.3

But, since the wire current does change with wire resistance, we, in fact.

have
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dW = 2dlnI dlnRw +dlnRw 5.4
W d In Rw

Now if we define the finite circuit parameter e = (d In I)/(d In Rw) we

obtain

dInW=(1-2e) dln Rw 5.5

or

d In W = (1 - 2F)(d In Rw/d In Tw)d In Tw =( - 2E)K d In Tw 5.6

where K = d In Rw/d In Tw. Now

dine = dIlnIRw

= dlnlI+dlnRw

= i+ d 1) 1 5.7

d In Rw
dine =(-)nRT w dlnTw =(0-)KdlnTw 5.8

then

dine = - i) InW 5.9

Also, combining equations 5.6 and 5.9, we determine that

dIn Tw = d in e /K(1 - e) 5.10

These are important relationships between wire heat transfer and

measurable wire properties, which will be used later.

tp

Now we need to determine similar logarithmic variations in heat loss. To

do this we write

H =tLkt(Tw - rTt)NutRet 5.11
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H = nLkt(Tw - riTt)NutRe t  5.11

Now, using the chain rule

dH = dktH + dTw-H d Nu - + dna dT 5.12
a kt riT aNu an aTt 51

If we divide by H, the first term on the RHS of equation 5.12 becomes

Sdk = Nu(Tw- nTt) dkt = dkt = d In k t = ntd InTt
H akt ktNu(Tw- nTt) k t

the second term becomes

ktNu dTw dTw Tw/Tt InTw E) d InTw
ktNu(Tw- nTt) (Tw-nTt) (Tw/Tt -) (e-n)

the third term becomes

k t (Tw - nTt) d Nu dN nNktNu(Tw- nTt) dNNu = u dIn Nu
Nu

the fourth term becomes

Ttkt Nu d n = - d n n
Skt Nu(Tw- nTt) (Tw/Tt - l) (e - n)

and finally the fifth term becomes

nt ktNu d Tit = d In Ttk tNu (Tw - nTt) (E) - n)d

n)) din Tt

Now defining the overheat parameter as

Tw - Tr (E) 5.13
Tr n

and collecting terms we obtain
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d In - 9 dlnTw + In t - I I dIn Tt

e- L twrJ

.din n + dln Nu 5.14
twr

Now, compressible flow measurements suggest that Nu = f(Re t, M, 0, p, 0)

and 71 = f( Ret, M, 0, p, 0). Thus, as a first step, we must determine the

auxiliary dependence of M and Re, on the sensing variables. Accordingly,

we may write Re, = pud/g.t as

dlnRe,=dln p + dlnu-dlngt 5.15

if A a Tt t then

dlnRe,=dlnp + dInu-m t d In Tt 5.16

Now the iso-energetic compressible relation gives

2, U2 ( +Y-1 U2  U2-R- L =  5.17
YRff 2 YRT R-T 51

so that

d In M = a'(d In u - 1/2(d In Tt)) 5.18

where a = (1+ M)

2

Now, using the chain rule once again, we may write

an +an dM+ an and=dRet+ d .- d -jdO 5.19d rl =-----dee TO

dividing by il, we may write the first term as

( /a R e- t) dRe, aInnd
n de )Re a In lnRe

and, treating successive terms, we obtain
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dInn in din ain n M +in n
aIn Re aRet +InMdln a inp

a inn
+ ain din$

a in ni
dInr= -1n n (dlnu+dinp-mtdIn"t)

a In Ret

*inn dilnu dInTit + ndInp
+ain M ( c amnp

* ainn d Int 5.20

In a similar manner we determine that

a nNu alnNu a lnNuSInNu InRet + dInM + dInp
a InRe, 1nM Inp

aInNu a InNudin, 5.21+ d ine + n $ .
aIn e In$

Now, since

dlne=dlnTw-dlnTt (e=--) 5.22

We may rewrite equation 5.21 as

dlnNu = inNu(dInu+ dIn p-mdInT)
a in Re

1a inNu (d In Tw -d In T) + dIn p

a InNu d In 0 5.23
+ a .,lns

Substituting for d In 11 and d In Nu in equation 5.14 and collecting like

terms, we determine that:
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d Re t a Nut e a NutdnH-Lnt-mt N tTRe Nu-t 7

I n Ret  an I d In Tt

[Ret a Nut M Nut 11 M an Ret an ).i
NuNuM " )Re

Ret aNut I Ret a I11 e [ Nut+ eTw
LNut a Re 'Cur n a Ret FI- 7NU97 9 n

+ t a Nut 1 $ an]d1 n 5.24Nu t a tw n a$

Since we have previously shown that
____ dine

dlnW=dlnH= 1
2  dine and dinTw= d In e

we can rewrite equation 5.24 as
(1-2adIne-[dInNu 1e d ine

1 d~nO -n IK( I - 4)

Ret aNut e a Nut
Ln~tutaRet Nut e

I (I M an Ret an 1 M aNu]m TR-.)- - I-Mt d In Ttr'- (x n aM n 2ce N t uaM

Ret aNu t 1 M aNut 1 1 M an Ret an
LN ut * Re t + CCR Nt'JtM W Cr t (Wnnu9M+, -

+Re, t aNu, 1 Re, an dInp[Nut aRet w n )e l l

+ , aNu t  1 , anhi

N' u d5.25

Now

dinW- dinl 2 Rw- a InRw d In I + 2(d In I) 5.26
S n- In
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and, for fixed flow conditions, equation 5.14 gives

dlnH= [dIiNu+ e9 d In Tw 5.27dInE -n

So that, introducing Aw' = 1/2(i In Rw/D In I) and equating W H, we

obtain

2A~r+ 2)d In I[%jU d KnN ) 1-rdI 5.28( ̂  ,.~ ~ In E)""f-;" d° 0- - ' K "

so that

K [ 1+~][i U d InNu ] 5.29

and so the LHS of equation 5.25 reduces to
e1 d In e

If we define E' = (I - E)/(1 2eAw'), then we determine that

n Ret aNut e a Nutd In e E'A nt- mtN KTaR-e tU_ a

1 Ma n Rel an 1 M aNut-fw,(1  t- - --- M m M )dlnTt

twrA T.f am n a Ret  2aNutaMI

[Ret aNu t + 1 M aNu t 1 1 M an Ret an dl
NU t  o Nut ' l -wWaM a Ret

+ Ret a Nut 1 Ret an

, Nut 1 a]dln] 5*a1
R+ Li 5v- a. r 'n a in I .3

where the last term in equation 5.30 may be rewritten as

1 aInn .alnNut]d
t a. 0 a.

Now, following Kovasznay (ref. 9), the basic equation for a hot-wire
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inclined to the flow may be written as

-= = Ti e--+V,
e P U1 TT TtUe AU+e0=53

where the sign conventions must be determined separately for constant

current and constant temperature operation as will be shown in section 6.

Replacing the logarithmic variables by fractional perturbations and

approximating do by v'/, the hot-wire sensitivities in equation 5.31 may

be finally written as
E' (alnNuwa InNu\

IOO00 In Re,/ I 5.32

1 1 M an Re an 1

-twr To(n am Re2t t I

Ae E' .+ [( nNO+I(In 5.33Aep-- 1 m M
TO0 aI e caIn Me]

v .I .L±(a Inn )+(a In n

e '[an__ - lnet) 5.34

and

1°- 00o tw.,r 1 +

We shall see that the proportionality constants are related to the

particular electrical system and are different for constant current and

constant temperature applications. However, these hot-wire sensitivities

apply to all flows whether subsonic, supersonic, incompressible or

compressible whether continuum or free molecular. For supersonic Mach

numbers ie. M sin 0 > 1.2 we have seen that all derivatives with respect to
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Mach number are negligible so that Ae = Aeu . Now, since

( u - = + = 5.36

equation 5.31 may be rewritten as

eT Ae +Ae -±Aeu ,)'+ 37
TT T" E_ u P 5

Now let us consider how to evaluate various fluctuating terms for the

case of a normal hot-wire, where we can rewrite equation 5.37 as

Ti ( U
e'= Ae -+ & - 538T, Tt ea U

We start by taking into consideration the so called Kovasznay diagram

(ref. 9) as follows. Squaring both sides of equation 5.38 we get

; 72 = Ae 2 TO + 2 ) e'' 2 -72 5.39
T,(TeTT(Lte)U+ Ae, ()2

Dividing through by (AeTt) 2 the above expression becomes

2 (eu),i,Ae, i
(e-22) (PUY AeT l + (P UYTi Aet + Tt25.40

If we now define

(AeT2 = s and - Tr

* then our expression can be rewritten as

2 (PU)'T Ti
s. r + 2 r + 5.41)2 +2(t)r 2

Kovasznay then suggests we plot s2 versus r. This is a second order curve

in r and the coefficients
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(?5u) '2 (Pou)' Tt 2

are obtained by a least square fit of the function s2 = f(r). These

coefficients then become

N N

Nj Xs1  Xr 2

iu'Tt 1 N N N

2 --2 E rz  z rs 2 z rI

ijl i: izi

and

N N N

": :1 1:1

N' N N
T D Xr1  r, 2 iI

N

X 2 r, X7r,4
jul ilu

N N ND I r XY r1
2  X.r

: r,2  y: r,3  y ,
jul jul l

and N is the total number of points used.

In order to obtain other terms which appear directly in the turbulent
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momentum and energy equations, we assume that we have an isentropic

flow field. This permits us to write the energy equation in its differential

form as

I aTt = (Y- 1)M -2 u + _p 5.42
cTt u P 9

where (X = 1/(1 +Y- -- 1M2)

2

Next let us consider the equation for the mass flow per unit area and time

in its differential form

am M au + Le
m u P543

Substituting for Dp/p in equation 5.42 gives
I a"Tt _ (_ 1)M2 --u + ap am aU 5.44

a Tt U P m u

or, collecting terms, we obtain

au 1 a Tt 1 amP 54
U c[l+ (v- 1)M2 ] Tt [1+ (Y- )M 2]P

Which, defining J3 = a Iy- 1)M2, can be written as

au ___lTt _ __ am. +L m] 5.46

so that, since p'/p" < 1.0

U' 1+ t' c4 + (U)'

Squaring both sides of this equation leads to the expression for the

streamwise turbulence intensity
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= C + Tt2  + 2c (FU_) (X + __ 5.48

In order to obtain an expression for the density fluctuation, we consider

the mass flow equation in the form

aL = am _ au 549
9 m U

Substituting in equation 5.46 and again neglecting pressure fluctuations

we obtain

-P [ CC+ 8 7E + Tt 5.50

which may be written as

-€= +) t 5.51

ie.

P* U,5.52
(X+0 ' VU O Tt'

while the squared term may be written as

9o' 1 z. '_ 2___ __u__I 1 2Tj-
~ 0(--+) 'PU'2, ,(;-:O,(PU)•(: - 5.53

cc (-U i u T + IP

The mass fluctuation can now be derived by setting

SU = P' , [( )(eu) 1

-- ( if( '+)1 1T.5

L .C +1 9 u x+0 5Tt4

time averaging we obtain

- u 2 (0 - c) (puYT - 2 T-2

p--2 "( - -) (+) ( 2+ (Tt) + - 5.55
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We can also determine expressions for the static temperature fluctuation

and the term u'T' which is obtained by considering the perfect gas law

p = R(pT) 5.56

or

aT = aP _P 5.57
T p p

Neglecting ap/p because it is small compared to the other terms, we see

that

T R or I 5.58
T p T

then from equation 5.53 we see that

T' (u)' ( 1 "tL5.59

so thatu'T___T' U'x T' C( ).__, '( Ltr,
uT.=./ a (pu>' ( 1 r,

x- )(E+ ) )1-1 5-60

which may be rewritten as

u- r (CX - 0) (pasv, , _. _ + 1 5.61
UT (cc + 0) ( "TO (CC + 0) ( --a)2 + (aC +0 ) Tt .I

The relationship between p'u' and u'T' can be determined using equation

5.58 since

P,-T_%-- = -_--x-= 5.62P U T u

so that
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-T (U) 5.63

Other useful relationships between the measured and derived normal

hot-wire parameters may also be obtained. Previously, we showed that
,: ~~~~ :-::. [(a") (eu) (___ ) 5

~fl 5.59)

and

u' I T/a+ C,

Solving both equations for (pu)'/(T"i) leads to

(EUY =(c+0 [u t 1 +1It: L] 5161
()- C Ca + 0 Tt CC+ oTt T 5.

so that I u. I T,_. _,' _ (oc + 6 .T(a) Tt 1 IT ( 5.65

then

(+ (+) o( + 5.66

multiplying through by af/(a + P) we get
_T . 1!' T'

T+ cc 5.67
Tt u T

Now, since
u7 T' T' (u).

Ti C = = ((x + ) += 5.68
Tt U T T (Fn)

then

(pu'" I + c c ( + T2 (o 5.69

(U U TT
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so that

(u) u T 5.70
(u) U T

It should be noted that this last expression can also be derived from the

fact that m = pu and p = RpT provided the assumption is made that the

p'/f" is negligible.

It is important to recall that all the above relationships can be derived

from single normal hot-wire measurements. However, other turbulent

terms which appear in the momentum and energy equations require

inclined hot-wire measurements.

Let us now consider the case of a yawed hot-wire. If we return to the

hot-wire equation 5.37 and square it we see thatr 12
- T' (u) + 5.71Ve '2 - Ae% =-+Aept (JG 57

[TTt UU~

expanding and collecting like terms we obtain

2U) , 2u)'  TV 2. (u)'Tt
e(+(e)- + (+e t -) 2 (Ae )(e (V ) Tt

(p 2 TT U 2A TT (DUT

+ 2(,&e )(Ae )- + 2( e )(Ae ) PuYv 5
TY V U Tt (V) 5.72

Now we run the test twice at each point, once with the hot-wire at =0'

and a second time with the wire at 4 = 1800, then we can write that
Ti V1e=0"- e2=8 4 (Ae )(T [( + ( -) 5.73

g0 0 0180 V ± "TT) UTt (F)JU
since
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[zTAe )(PU)'Tt] 0=* (eT(C~e ~;;] 18O

i , t 1 T, ( -UT 1 0 : (V )T I O = 180t0.. . . . 4 .. ) . . . .. .> q

(&e )(Ae ) J= - (e() 1
0 °0

and([e,)(&, [(Ae
Ae )(Ae) (')v 1 = =(A )u 1800

Dividing through by

_,±4 (AeT)(Ae.)

we obtain
0q° o~.2°= o =* Ti~q- v- .

0____ _ Or, 1 )v +t 5.74+4 (AezT) (Ae )  \Ae T/ (V') iU, 'Tk

However, if we define
-.20 -.e=260

s* =  O8 5.75
4 (Ae )(&eV)

and
Aep

r meT 5.76

then equation 5.74 can be rewritten as follows

s*= (Pu)v 5.77

U Tt 57

If we now plot s* versus r we see that the function is linear with a slope

of
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(Vfl)U

and an intercept of!T V
•~ ETt

These values can also be obtained if we perform a least square fit to the

data. It can be shown that, if we have N number of data points, this

method gives
N 2 2(pu)'v' NX r s -Xr 1 Xs 5.78

(N I)fl N 2 ri r ",

and
N N N"* Ttv-- E 1i 2 :,-i ri I. ri s,*

= 1 j M 1 i m l i z, 5 .7 9
N 2: ximl N2 ri )z

At this point it should be noted that from the normal hot-wire

measurements we have values for
( Eu)'2  (u)'Tt Ti --'

(V- ) ' (U)Tt and

and from the yawed wire measurements we now know
(PUY' T7v'

(U)V and Tt

Since e' 2
0.. will also have been recorded we can obtain the value of v'2/i 2

from the following expression
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VU -=25 2-2  (Ae fl)T(AV~.0( + Ae2T 2( )(Ae
T2 (AeV,) 0: °-  - (p u Tj2 T U (VU)Tt

(Ae )(Ae)-Ti V 2 (Ae )(,&e ) *Y 5.80-T ut V (Vu)u 5.

We can now determine the Reynolds shear stress term u'v' by

multiplying equation 5.47 by v'/'i to obtain:

= -- =-- + ( cc 5.81jT2 (X + 0 t (X+0 (-"Pm) U

The term v'T' which appears in the turbulent Prandtl number

formulation, equation 3.22, is obtained by multiplying equation 5.59 by

v'/jf to obtain:
v'T'  U), ( V- 'V;

vK [(~ U 1 T-~. 5.82
UT CC + 0 (Pf) U c +~ 'UTt~

Two other useful relationships may also be derived. Multiplying equation

5.67 by v'/ gives

2 -- T '  5.83

U Tt = U + UT

Similarly, from equation 5.70 we obtain

(pu)'v = ' V' 5.84
(~fl)U 2  UT_

The triple correlation p'u'v' which appears in the compressible shear

stress formulation (see section 1) can be determined from equation 5.47,

5.52 and the rms measurement of equation 5.80. So, at this point we

know, in principle, how to obtain the turbulent flow properties and

correlations which appear in the momentum and energy equations from

variables determined directly by the hot-wire.
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Although many years of effort have been expended in hot-wire

anemometry research, it is still clearly an inexact science. We have seen

that numerous assumptions must be made to estimate the fluctuating

flow variables from the measured hot-wire quantities. Now let us turn

our attention to some of the practical aspects of hot-wire anemometry.
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Section 6 Practical Procedures for Turbulence

Measurements

We have seen in section 4 that, with appropriate electrical compensation,

the time constant can be restored to frequencies sufficient to assume

essentially instantaneous response. Imposing this constraint, we may

rewrite the general expressions for wire sensitivity (ref. 1) for constant

current as

P eu

+AeT(l00-=,) + e 106.1

with

;6E aIn Nuo A~v aIn n1

= 00[~ alnReo. Cwr DlnRe0 j6.

,& a !E iv (a In Nuo 1 In Nu0

100 L I9n Reo oca Iln M

Mr(1 in n alnn
-~ L~-j-.K~-~ ln~ 0 JJ6.3

U F( aIn Nuo 1 aIn Nuo'
Ae.-- K +AwivK- -nt -mt

100 a In Reo 2oa ln M)

and

U EAiw InxH] E'Ai 1 a in ian Nu0 ] 6
10 FT -F 100 twr -FO0_

where E' = (I - )/(l + 2Aw'E) 6.6
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For constant temperature systems, the sensitivities are usually defined

with respect to a fluctuating current, so we may write

AI= AI,(I0- ) +AU

- AIT(100- ,) + AI 6.7

We can obtain the sensitivities for AI from those for Ae by replacing eE

by IE", where E" is the feed-back reduction factor defined in (ref. 10) as
1

E- 6.8
2Ai +_

Thus, for the correct interpretation of the electrical signal from a

hot-wire, we must consider the response of the electrical system, the

variation of wire resistance with operating temperature and the fluid

dynamic calibration.

Let us first consider the electrical system. We can see that an important

term in any hot-wire anemometer measurement is the feedback

parameter (e) which relates wire power loss to measured wire voltage.

Consider then the constant-current circuit shown on the next page where

= -(d log Iw)/(d log Rw) and its equivalent circuit derived using

Thevenin's theorem.
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V Vo A
Ri Ro

A
10Q

1OQ 100Q Equivalent

Circuit Rw
RwRu B

B

V

Now the open-circuit voltage across AB is

V (100 + RB)
VO RxR l0)6.9V,=(RI + RD+ 100) .

and the resistance in series with AB when V is shorted is

Ro - (0 1 R ~YI(1= 00 + RD - T

= Ri(RD + 100) 6.10
(Ri+ RD + 100)

so that the wire current is

Vo V(I00+RB)(RI+RB+00)
Ro + Rw + 10 = (RI+R+1 00)(Ri (RD+ 100) (10+ Rw)(Ri+RB+100))

V (100 + RD)
RI(RD +Rw+l 0)+ (10+ Rw)(RB 100) 6.11

Since

d log lw - Rw (RI+RB+100) 6.12

d logRw RI(RD +Rw+110) + (10+ Rw)(Ri+ 100)

then

Rw (Ri+RB +100)
' RI(R +Rw+10)+(I0+Rw)(R+100)

Now consider the constant temperature system shown in the figure below

where the amplifier is characterized by its transconductance, G, and its
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short circuit current Isc.

R2 R3

Amplifier

wI

I'= GAe + Isc

Now I' = GAe + Isc and the relationship between the current I' supplied to

the bridge and wire current Iw, is

Iv =I *cc' where cx' R+ R3 6.14I-+R R2 + R 3+ Rw

The unbalanced voltage is proportional to the bridge unbalance Rb - Rw so

that

Ae = a'I'(Rb - Rw) 6.15

Perturbing these equations leads to

alog F log 1w RwG&'

log Rw log Rw 1 - Gc'(Rb - Rw)

Thus we can relate wire voltage to the wire input power for both constant

current and constant temperature anemometer systems. Next we need to

determine the relationship between the measured output voltage and

actual wire voltage as shown on the next page
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Vout = e + RiIw
Vut = e + RiIW Riv

Ri R2 Vut = e' + RlRiV-Lw RwIw
R i R 2Rw Iw aRw

VWut IWj4 Vbeiuzce -+ ID VWut = e R- L 6.17w Rw

Rw V RRB e = Iw Rw

e ' = lv R w + R Iw

S= w RiRw + R- Iw 6.18
aRw

so that

R w i - R w 1 -6 1

or

RMS VWt = RMS e' 1- 6.20

Now let us look at the parameters which govern the relationship between

wire resistance and operating temperature. First consider the resistance-

temperature relation and some wire properties given below.

Wire Properties

Platinum Platinum/1O%Rhodium Units

cp .032 @ 500OR slightly higher cal/g °C

.037 @ 850R
p 21.37 20.48 gm/cc
k .17 .072 cal/sec cm 'C
Off 3.8 x 10 - 3  1.6 x 10 -3  /°C

- -.045 -.06 /°C
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The resistance-temperature relationship may be expressed as

Rw = Rf{1 + af(Tw - Tf) + yf[cf(Tw - Tf)] 2} 6.21

where f is some reference condition. The parameter K which relates wire

power input and temperature can be calculated from

1 (dr Tr + a-) = d log Rw
I + aw d log Tw

Ri rw [ocf + 2vlc 2 (Tw - Tf)

Rw

- i Tw I I + 2yf ocf(Tw- T) 6.22

Rw [+yo(wT)
Plots of K and wire temperature versus wire resistance ratios are shown

in figures 6.1 and 6.2.

Wire overheat parameters may be determined as follows

aw' = (Rw- Rr)/Rr 6.23

where Rr is the recovery resistance of the wire. The recovery factor

Tr/Tw varies between 0.96 and 1.1, but is essentially constant (0.96) for

Mach numbers greater than 2.0 and Reynolds numbers greater than 20.

Typically, Aw' > aw' by up to 20% at high overheat ratios and there are

several ways to compute its value. A method which eliminates the

differentiation of experimental data with a steep slope is detailed below.

Experimentally it is easier to determine Aw' beginning with a plot of
12_ Rw -Rr
IRw vs a' - Rra . W Rr

Now, defining C as the slope of (lw2 Rw)/aw' vs aw' at high overheat,
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( I~w'2 R I' Rw
je. C awv /aw = 0 a w 6.24

aw)

1i -(1 W C au 6.25
1 - Ca~v

We are now in a position to determine the finite circuit parameter E'. The

remaining terms in the sensitivity equations are defined as follows

e =mean voltage across the wire H = total power to the wire

twr=Tw Tr. a v -0- a~vyr) 6.26
Tr ocrTr

1C 6.27
1 + Y Im

2

Mtn'- a logj~ = .65 and n a log Tt 75

1.0

0.9

0.8

0.7

0.6Pt 1%R

0.5

1.0 1.5 2.0 2.5 3.0 3.5
R/Ramb

Fig. 6.1 Variation of parameter K with wire temperature
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2000

1800

1600
Tw (R ° )

1400

1200 Pt

1000 Pt - 10% Rh

800

600
1.0 1.5 2.0 2.5 3.0 3.5

R/Ramb
Fig. 6.2 Variation of wire temperature with wire resistance

For constant current operation we also need to determine the wire time

constant from ref. I as

Cpwpwd 2 Rw 6.28
4 Nuomkoei r Rr

A plot of Nu o versus Re o is given below. But we should use measured values

of Nusselt number (Nuom). Typical comparisons between measured and

theoretical values are shown in figure 6.3. Figure 6.4 shows the effects of

the wire dimensions and thermal properties. If we know Cpw, Pws d2 , Nuom,

ko, and Rw/Rr, we may calculate the true time-constant and correct the

measured wire voltage as follows

L~e t~ 2  6.29
Aem Ayt Ae2, Ae2  Aeo.

where Ae ° is uncompensated wire voltage which is small for usual values of
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ji. Thus,

where 9set is the compensating amplifier time constant. So we are now in

a position to account for the effects of the electrical system and wire

resistance variations on the measured electrical signal.

10

d InNu.
V Numo

'u 
d In R et  0 .5

1.0

0.1
0.1.0 10.0 100 1000

* Ret

Fig. 6.3 Comparison of measured and theoretical heat loss.

1.0

NUm

0.1 I

40.1 (L1-(k) 1/2 1/2 1.0

Fig. 6.4 Effect of wire properties on heat transfer.
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Now let us direct our attention to the remaining terms in the sensitivity

equations. Following the results of section 5, we may make the following

high Mach number approximations for M sin > 1.2 and (a In Nuo/a In M)

- 0.

D in Nuo 0.5 6.30
a In Re0  F *s

Re sin 0

where

Re* 1i.1 - .8 2 ) (V'R-e 1. 1)5] 6.31

w ith 
1w6 

3

TI=0.95 + 0.0963/Re0  6.33

an_ .0963 or ainn 1 6.3
a Re. Reo2 aIn Reo 1 + 10Re. .3

Normally we assume that for Re0 > 40

a in n =0 6.35
a in Reo

Finally for M sin 0 > 1.2

I~vainn 0
ain M

so that for high M. ie. M. sin > 1.2

Ae P = Aeu = AeP

- ~' and we may rewrite the sensitivity equations as
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=E !.rA an Nuo Aiv aIn n 1
[A n6.36

100 n Re 0  va In Re o

e E= [K+ A; (K -1.75+0.65 a In Nuo
T.a in Re

-; a In Re 6.37

A) " _.A .[ [ H 6.38

Thus, for M sin 0 > 1.2 and Re o > 40, it is possible to calibrate a wire

directly in a flow with varying mean mass flow distribution such as a

boundary layer or by varying the freestream total pressure. With

Re= pud 12 Rw 12 RwRr r 6.39SlkT(Tw-Tr) cIlk'Rw-Rr)

the term

aIn Nuo Re o a Nuo

aIn Re o  Nu o a Re o

( p /u, R (a I 2 RWRr/kT(Rw -Rr)) 6.40
12 Rw Rr/ (Rw -Rr/ apu/g .4

So that if we measure
12 RwRr

kT(Rw -Rr)

at several different values of pu/g and differentiate the data we can

determine
aIn Nu.
D In Reo

directly. It helps to plot
12 RwRr

kT(Rw - Rr)
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against the square root of pulp since, for Re > 40, this plot is usually

linear and may be smoothed before differentiation.

Other forms of the sensitivity equations can be introduced which also

allow for direct, in-situ calibration. If we put a normal wire into a

uniform free-stream, equation 6.1 reduces to

e= AeT(1OT) =T [In ] 6.41

Similarly, holding other terms constant, we can show that

I6.42

and

Ae. y-= -[ an 0 6.43

Now, if total temperature and Mach number are held constant, we may

write

aIn pu = a In po 6.44

so that equation 6.42 may be rewritten as

Ile =1 faint 6.45

The sensitivity AePU can then be evaluated from the wind tunnel

calibration of a wire on the tunnel center-line by varying po for constant

M and To. We also must hold the overheat constant at various values. If

we record values of E" versus p0 at various constant overheats and plot

In E versus In po as shown on the next page,
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M = const

To = const

In . wr- CO
Cl

C2

S* C3

"11

In Po

we can obtain the slopes a In E/a In po. These slopes are independent of

M and cwr. In fact, a In El/ In p. is only a function of Re, as shown below.

a In
D In Eo

Re,

* .It is recommended that Ae. is obtained by changing wire angle at

constant overheat in a fixed free-stream flow. We note that this

calibration should be conducted at a variety of tunnel total pressures

with Mach number and total temperature held constant. The sensitivity

varies non-linearly with Reynolds number but is independent of Mach
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number. A typical calibration is shown below.

0.20

a ln E

0 '

0 Re t  60

Th,.. sensitivity AeTt presents a slight problem since it cannot normally be

determined in-situ using the simplified equation 6.41 as it requires a

tunnel center-line calibration in which M and po are held constant as total

temperature is changed. This is generally not feasible, since changing To

will usually change po as well as pu-. However, for M sin 0 > 1.2 and Re o >

40 we can rewrite equation 6.37 as

Ae .= IE K+Aw(K-1.75) - m tAep, 6.46T. 1001I

so that the total temperature sensitivity can be calculated using the

in-situ determination of mass flux sensitivity and equation 6.22.

Once the hot-wire has been calibrated, the usual test procedure is as

follows. First we record 1w, Vw, V'out (compensated), V'balancc

(uncompensated), RB, Ri (setting for overheat), Rw cold and 1tset for each
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overheat setting. Next we plot Rw vs Iw and calculate A'w vs Rw. Then, for

each Rw, we calculate the following terms

1aln 15.j I. t 8. nRe

2. A 9. W -wire voltage (Vw) 16. V~ut

3. Tw 10. E' 17. V..

4. K 11. &eM 18. W,

5. aiv 12. AeT, 19. i6orr

6. 'wr 13. 1w 20. r the sensitivity ratio
7. a In Nu 14. Cw Aem

aIn Re AeT.

If we now take the root-mean-square hot-wire signal and divide by AeTo

we obtain

2 =(._.T.)2 = T + r2 (p u)'2 - 2r pu'T° 6.47

and we may determine the three unknowns

T2, (p u)' 2 and (p u)'T'

In principle, only three overheat settings are required. But, in practice, at

least three times that number should be made in order to provide

consistency checks and reduce the scatter. The results can also be

determined from the so-called Kovasznay diagram (ref. 9) or by

regression. The Kovasznay diagram can be obtained by plotting U =

e'/AeTo against the sensitivity ratio (r). Typical curves showing the

dependence on the relative magnitude of the three unknown quantities

are presented in figure 6.5. If only mass flow fluctuations are present

the diagram will be a straight line from the origin with the slope
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proportional to the mass flow fluctuation level. If only total temperature

fluctuations are present, the diagram is a horizonal line at the total

temperature fluctuation level. If both fluctuations are present, the plot

varies according to the correlation coefficient between the two

fluctuations. For perfectly correlated or anti-correlated fluctuations, the

curve becomes a straight line, and when there is zero correlation it is a

hyperbola. In these cases, the two fluctuation levels can be determined

as indicated in figure 6.5.

For a yawed wire we have
e'e Lu..)' + A 8 v'

P pu Tt u

so that, when we difference the mean square of two readings taken 180

deg. apart, we obtain

00 e "1 80 0 = 4[AePUAeo (pu)'v' + Ae0AeTtv't] 6.49

which we may write as

s* e'2 = 4[v +r*(pu)'v'] 6.50
4Ae A eTt

where

r* = PU 6.51

A A eTt

If we plot s* against r* we obtain
(pu)'v' and v-

4e~.

from the intercept and slope respectively.
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r r

a) velocity fluctuation alone b) temperature fluctuation alone

'Il

c) R=-1 d) R= +1

1)

'OeI

e) R 0

Fig. 6.5 Typical mode fluctuation diagrams
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Now, having obtained the rms values
(P U)' T and the correlation (p u)' T

from a normal wire, and

(pu)'v' and v'T'

from a yawed wire, we are in a position to determine the fluctuating flow

variables outlined in section 5.

Unfortunately, the mass flow and total temperature fluctuations are not

the sole characteristic parameters of an unsteady supersonic flow field.

We must also consider the vorticity 't, entropy a, and sound t modes.

If the fluctuation levels are low, as in the free stream, these modes

satisfy separate linear differential equations and the hot-wire equation

becomes (ref. 1)

Ae = a Ae. + T AeT + i Ae. 6.52

where

Aea = Aep + t AeT 6.53

Ae =[ 3 AeT-Aeu=IPAe r - AeP (M> 1.2) 6.54

&e. = a(Y - 1)(I - nxM) Ae - - &e

= 1( 1 00 nxM) AeT -! + CP M 1.2) 6.55

where

o = I/(+ Y M2 ) = (+ 0.2M 2 )
2

and
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c (Y _ 1)M 2 - 0.4ocM

for air and n. is the direction cosine defined as nx = -1/M.

The fluctuation variables are given in ref. 1 as

AT d J+ (- 1)rr 6.56

T
A = - " + W1 6.57

AUC = n n - 6.58
U M

-- Yr 
6.59P

ATt = Od"+13t+ Y - 1)[c + M x jr 6.60

Am =-" + + I nx +-AU 6.61
m+ u

But we cannot determine all these variables directly from hot-wire

measurements. A usual compromise is to plot Ae/Ae o against Ae /Ae0 to

determine which variables may be neglected (ref. 1).

Since turbulent flows vary in both space and time, useful insight into

turbulent structure can be gained from space-time correlations in

compressible flows. Two approaches will be oescribed. In the first, let

us locate two wires at points A and B normal to the flow direction such

that

e 6.62eA =sAmA +SAA 6.62

= -s Bm + se 6.63

Cross-correlating, we obtain
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'A 'D= SASD MfAmB + SOA SOD '9A9B

- SASOD e9 MA - SBSeA mBeA 6.64

or

Z = e A-B r, BeA + rA(r, AmB - mAe 8 ) 6.65

where

eAe SA S
z = A B rA= m O , rB=SAeSeA ~ Se

This plots linearly in the z, rA plane with intercept

(ee- rBm BeA)

and slope

(Bm B - EAe

So that, if we fix rB = rBI which is a known constant, and test with known

values rA = rAl and rA2 to obtain z1 and z2, we obtain

A= (slope)r = = r -mAmD" mAOB 6.66

and

(intercept)r = const eA- - r]3 mBeA 6.67

If we repeat procedure with a new known constant rB2 we obtain four

equations and four unknowns. To improve our accuracy we can continue

'the test sequence and determine the four unknowns graphically as shown

on the next page.
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First plot a"zrvs (r B)
/

C)z

arA slope - m B

rB

intercept = mAOB

Then plot (intercept, I) =0 AOB rB - mBOA vs (rB)

I

_..A 
intercept 

= Ae B

SrB

slope = mB -A

Space-time correlations in compressible flows may be obtained with two

wires at points A and B in the flow as follows:
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eA = aAmA + PAOA at time t 6.68

eB = (XBmB + PB0 B  at time t' 6.69

If we adjust the anemometer gains such that rA = rB = r and measure

(eA+ eB)2 - (eA- eB)2

(eA+ 3 )2 + (eA- eB)

we obtain

Re r Am B + r (MAeOB+ ' BEA) + -e A)  + C 6.70eAerZ + 2rAiiF.A A

where

=1A OA

and

F O A - B ( F -S ff__B 6.71

OAA A m- B BA

When the wires are made of the same material and operated at the same

overheat ratio then

B -c = 0 & r2 r 2

A A

Furthermore, as the overheat - 0, cz/P3 -+ 0 and equation 6.70 reduces to

the temperature-temperature correlation

AB
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At high overheat ratios c/P3 -- 1.0, or o 1.0, so that if 0 v m, or 0 , m, the

equation reduces to the mass flux - mass flux correlation

mWmB

To determined the statistical values outlined earlier, we have to add,

subtract and multiply the fluctuating outputs and sometimes delay them

in time and filter with frequency. Addition and subtraction are

accomplished by converting signal voltages to currents and applying

them to resistors as shown in the circuit below.

R3

- R 1

Ie

e 2

i R

In the circuit, A has a high input resistance (>> R3), so that all current goes

through R3, a large voltage amplification occurs at A and the voltage at s

which is equal to eo/A, tends to 0. Now

o= - R3l +e) 6.72

so that if RI = R2 then eo =-(e, +e2). Also, ife 2 =0then Ri =R3 and eo =

-e. In these ways we are able to add and subtract hot-wire voltages. We

can integrate hot-wire signals as follows
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C

ei  N' . e o

Again if A - c, es  0 and the input impedance of A -4 c. For the

capacitance Q = Ceo we may write

dQ= i =dC-- LO - 6.73
dt- dt R

so that

e.- f -- dt 6.74

and if ei = a sin co then eo = -(a/coRC) cos wt.

Differentiation may be accomplished as follows

R

C I  O

s(eq=)

where we may write

C= -- 6.75
dt R

so that~de i

e. RC Le 6.76
dt

In general, what is termed the quarter-square-technique is used for

multiplication. In this case two squaring circuits are used, one to square

the quantity (x + y) and the other to square the quantity (x - y). The

outputs of the two squaring circuits are then scaled such that
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(1/4)[(x +y) 2 _ (x - y)2] = xy 6.77

The input is usually scaled such that the output is (1/10)xy. This scaling

is necessary to use the full dynamic range of the two input amplifiers

without saturation of the output amplifier. Division can be accomplished

by placing a squaring network in a feedback loop as shown below

A Q-S 10A

I Multiplier B

BI

The power spectrum of a hot-wire signal can be obtained by Fourier

transformation of the auto-correlation or by spectrum analysis using

inductance-capacitance band pass filters. However, filters with band

width of 1/3 octave, ie. 213 x center frequency, are not suitable for

measuring spectra with sharp peaks. Typical turbulent velocity spectra

drop off rapidly with frequency. But, in supersonic flows, there may still

be significant energy beyond 50 kHz. The sharp drop off can cause

changes in the effective filter band width and, at extremely high

frequencies, the spatial resolution of the hot-wire sensing element

renders spectral measurements open to question. Although spectra of

higher order correlations have been reported at low speeds, care must be

exercised to match the phase shifts of the two filter sets, when making

these measurements in high-speed flows.
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Some practical hot-wire signal analysis set ups are shown below

E+eau + u el au au

U+uProbe Anem Square e2 a2 fV

Measure~ment ofAi

Xwire probe Ae

Measurement of ~

uuE,

* Measurement of iiy
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Intensity Spectrum

Mult.f

n (w) -NB. watch for phase
differences in filters

Cross Spectrum

u tTime

•Delay

SMult. f V

U or v

Auto or Cross Correlations

Details of the properties of materials used in the fabrication of hot-wire

probes are given in an attached list. Generally hot-wire probes are

welded or soft-soldered to the supports. Conventional or etched

wollaston wires are used. Film gages have much less directional

sensitivity because of conduction to the glass (ie. their effective aspect

ratio is lower). They also have a complex time-constant so it is difficult to

compensate for quantitative measurements. Some examples of probe
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fabrication sequences are given on the following pages.

Hot-wire probes

gold plated stainless steel or similar

Jewelers broaches /
knitting needles Epoxy or ceramic body

To avoid strain gage oscillations, we must maintain slack in the wires.

Activer

E .- Z:1

Lprobe Xprobe
(also V & slant)

Film Probes

alternative film
film /d / pryex

f____________ 
leads on surface
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, pyrex rod

quartz fibre---+

1-film

leads ZZ U.

The fabrication sequence for double sensor with straight or coiled wires is

shown as follows:

(8) Grooves -. 02 Deep "

Tip.003

.0150 Ni .

Nickel Support Pins

1__10

r--! .62-5 -

.0~. 156

~~1of

Ceramic Insert
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.12 5 Drill

10 lie

.200 .002

"" -. 004

•.150 0005 .875

Aluminum or Stainless Steel Body

S-.5 -- -14.5

Miniature Co-axial Cable Beldon 8700, 28AWG

(2) Ni oxide coated pins

.325 30-1(2) Ni pins
Epoxied to insert
(BB 2 10 1 Epoxy)

.19

Pin/Ceramic Assembly
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SOLDERFINSULATE JOINTS
WITH EPOXY

Cable/Pin/Ceramic Assembly

Apply Apply
Epoxy Epoxy

(leads) .350 3-3

(to ceramic) .50--.5

Assembled Probe

~.10

distance of
unobstructed
length --

bend (2) Ni wires

Preparation of Pins for Coil Winding
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Finally wind the coil, straighten bent pins, spot weld single wire to Ni

pins, record resistances; check for shorts to ground, and coat spot-weld

with conductive epoxy (E3021).

The procedure for the construction of surface wire gages is shown on the

following pages. These probes can be used for transition and separation

detection without disturbing the flow. Surface flow direction can also be

sensed with a pair of wires on a single gage (ref. 11).
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Electrical leads
(0.015" dia Ni Wires)

Stainless Steel Tube- Polystyrene Plug
(0.125" O.D., 3" long) (cast from resin)

Shield of cable Core lead of cable

Epoxy filling

Coaxial Cable
ending in BNC (female)
connector.

Sensor Wire
(0.0002" dia. Tungsten Wire)
spot welded to electrical
leads and solvent buried
using methyl-ethyl-ketone

/ as solvent.

0.0625

Surface Wire Gage
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0.125 O.D.
450 /- 0.116 O.O.

-I 1 W- 0.08

0.1875

," 3.5

'p

Surface Flow Direction Sensor (ref. 12).
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Section 7 Hot-Wire and Laser Velocimeter Measurements

In the first part of this section, the results of our hot-wire freestream

turbulence measurements in the M = 6.0 and M = 3.0 high Reynolds

number facilities will be described. Comparisons with previous data

obtained at much lower unit Reynolds numbers in the Ames 3.5 foot HWT

(fig. 7.1) are very encouraging as they show superior flow quality in the

AFWAL facility at high unit Reynolds numbers. The mass flow

fluctuations increase with tunnel total pressure and range from 0.6 to 1.6

percent. Our previous Ames data were taken in 1972 and after the

tunnel was converted to a free jet test section. These latter data were

taken in 1974.

If we assume that the disturbances sensed by the hot-wire are

predominantly sound waves radiated from the turbulent nozzle wall

boundary layers, then the pressure fluctuation levels can be estimated

from our hot-wire data. Hot-wire theory shows this assumption to be

consistent with linear mode diagrams, (fig. 7.2). The results of these

calculations are shown in fig. 7.3 and comparisons made with the Ames

HWT and the Langley VDT. This figure clearly shows better flow quality

in the M = 6 facility. But, sound is not the only disturbance mode, as

temperature spottiness, probably due to non-uniform heating of the

supply gas, is not negligible (fig. 7.1). Thus, the pressure level estimates

from the hot-wire data should be viewed as upper bounds. The actual

levels should be somewhat lower. Direct pressure measurements should

confirm this.
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Two hot-wire signals are shown in fig. 7.4; one for a pressure of 930 psi,

the other for a pressure of 1860 psi. These traces clearly show the

increased high frequency (smaller length scale) contribution at the higher

tunnel total pressure. Low-frequency (large scale) contributions are also

apparent in both hot-wire traces. In general, most of the energy is

concentrated at low frequencies. Auto-correlation measurements show

the turbulent integral length scales to be of the order of the jet exit

diameter. Freestream turbulence measurements have also been made in

the M = 3 facility. These results are shown in fig. 7.5.

The laser velocimeter data were obtained across flat plate boundary

layers in the FDL M = 6.0 wind tunnel. Zero pressure gradient and

adverse, ramp induced, pressure gradient flows were investigated. In the

latter case, the capability for both streamwise and vertical velocity

measurements was demonstrated. Previously, problems with particle

arrival rates, run to run velocity variations and probe volume location

within the boundary layer had been encountered. These problems had

led to significant uncertainties and scatter in the measured velocity

profiles.

Although more costly, laborious and tedious to operate, the laser

velocimeter probably represents the instrument of last resort for the

measurement of flow in compression corners, shock boundary layer

interactions and other large scale unsteady turbulent flows. Once in

operation, linear, non-intrusive unambiguous turbulent velocity and

shear stresses can be obtained once seeding and sampling bias problems
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have been overcome. Flows of most practical interest and importance

often involve high turbulence, flow separation and large scale

unsteadiness. Here the inherent linearity, non-perturbing, directionally

sensitive properties of the laser velocimeter come to bear. However, it is

also at these conditions that laser velocimeter sampling bias comes to the

forefront.

Most researchers agree that continuous-wave mode signals are free from

bias. However, in high-speed wind tunnel applications where particle

concentrations are low, individual realization processing is required. In

these cases the potential errors attributable to sampling bias can become

significant at high turbulence levels. In a recent paper (ref. 12) the

existence of "sampling bias" in individual realization laser velocimeter

measurements has been experimentally verified and shown to be

independent of the sample rate. The results clearly demonstrate that, for

the individual realization mode of laser velocimetry, sampling bias exists

and that it increases approximately with the square of the turbulence

intensity. It was also demonstrated that these bias effects are

independent of sampling rate provided the seeding concentration is

sufficiently low to insure individual realization measurements. A

two-dimensional weighting of the velocity samples was shown to be

effective in correcting the individual realization measurements for

sampling bias.

With particle bias problems identified and corrected, the seeding problem

was the first to be addressed during the present work. A fluidized bed of
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carbon particles which proved to be ineffective was replaced by an

atomizer ahead of the throat. The accelerations and shear through the

nozzle were sufficient to break up and provide an ample supply of

scattering centers in the laser velocimeter focal volume. Signal to noise

was also improved by the use of pre-amplifiers on the photomultiplier

tube outputs. With these improvements, valid velocity data rates were

increased to 3,000 samples per second.

The improved data acquisition rate also alleviated the thermal growth

problem and its effect on probe volume location within the boundary

layer. Increased data rates in the wall region enabled shorter run times,

reduced model heating and less thermal distortion. Measurements can

now be made through the wall region without excessive model heating,

thus minimizing measurement location uncertainties. Reliable

measurements of the axial velocity component were made within 0.010

inches of the wall. Vertical velocity measurements were limited to 0.03

inches from the wall.

The problem of run to run edge velocity variations was first noticed

during preliminary freestream shakedown runs. These variations were

corrected by correlating each set of shear layer measurements with

individual run total temperature measurements. A more elusive data

reduction problem was also identified. It concerns the relatively crude

filter ranges on the laser velocimeter signal processor. Since the mean

flow velocity and turbulence measurements were made with a dual beam

velocimeter utilizing Bragg cell frequency shift, a stationary particle
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produced a doppler frequency of (fo) 14 mHz for example in fig. 7.6.

Thus, in the flow field, particles generated doppler frequencies fo ± f

depending on their direction normal to the moving fringes. However,

even with this offset errors can arise due to incorrect filter settings.

Extra care in their selection must be exercised not only in separated flow

regions but also in the wall region of attached flows where local

turbulence levels are high. The effect of 16 mHz and 8 mHz filter settings

are shown by the solid and dashed lines on fig. 7.6. The problem would

be more pronounced closer to the wall.

Fig. 7.7 shows a zero pressure gradient flat plate velocity profile. It can

be seen that the comparison with the Van Driest theory is excellent. Fig.

7.8 shows a profile measured across the ramp induced pressure gradient

flow field. A direct comparison of ramp induced effects on the mean and

turbulent flow fields can be seen in fig. 7.9 where measurements

obtained at the same streamwise station are presented. These

measurements obtained at a station 0.3 8 ahead of the 30-deg. ramp

clearly show retardation of the flbw and a significant increase in

turbulence level over a wide region. The vertical velocity profile

measured at the same location ahead of the interaction is shown in fig.

7.10. Local flow angularity profiles across the boundary layer have been

calculated from the two component laser measurements. These results

(fig. 7.11), show that local flow angles close to the wedge deflection angle

are present in the shear layer just upstream of the interaction.

Comparison of the two turbulence level profiles shows that the
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streamwise turbulent kinetic energy for the ramp flow is more than three

times that for the flat-plate boundary layer. Turbulent mixing length

scales, calculated using local rms levels and mean gradients, are an order

of magnitude larger. Turbulence levels based on local mean flow values

exceed 30 percent in the wall region so that we can see from section 4

that significant hot-wire measurement errors would arise. At this high

intensity, large-scale turbulence results in directional intermittency of up

to 15 percent ahead of the time-averaged recirculation zone. Hot-wire

measurement errors associated with directional intermittency are

discussed in detail in ref. 7.

To conclude, diagnostic tools are now available to attempt the

measurement of turbulent high-speed flows, an area where

comprehensive studies are lacking. However, measurement techniques

must be used with understanding and care in appropriate situations. All

too often experimental methods have been stretched beyond their

reliable limits and misleading results have been reported. Apparent

discrepancies between measurements and calculations cannot solely be

attributed to deficiencies in turbulence modeling until reliable

assessments have been made of measurement errors. Although the

potential of laser velocimetry for the non-intrusive measurement of

mean velocity, turbulence intensity and shear stress in complex wind

tunnel flow fields has long been recognized, the design, construction and

successful operation of systems in other than small, closely controlled

laboratory situations still presents a formidable engineering challenge.

Thus, it is important that redundant hot-wire and laser velocimetry
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experiments be carried out to determine the reliable range of hot-wire

application.
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Fig. 7.1 Mass flow and total temperature fluctuations
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Fig. 7.2 Mode diagrams, AFWAL, M =6.0
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Fig. 7.3 Freestreamn pressure fluctuations
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Fig. 7.4 Hot-wire traces, AFWAL, M 6.0,
time scale 1 ms/cm.
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Fig. 7.5 Hot-wire turbulence measurements, AFWAL, M =3.0
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Fig. 7.7 Flat plate axial velocity profile
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Fig. 7.8 Axial velocity profile ahead of interaction,
M. = 6.0, p0 = 700 psia
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Fig. 7.10 Vertical velocity profile ahead of interaction,
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Fig. 7.11 Flow angularity across the boundary layer, wedge angle = 30 deg.
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List of Symbols

A;w Overheat parameter, 1 - 1 \ -
2 Rw tdI
Rw-Rr

a6w Overheat parameter, Rr

C Thermal capacity, electrical capacitance

Cxy Modulus of cross spectral density function

c Specific heat

E,'E DC voltage

e', Ae Unsteady voltages

Aepu ,Ae Tt ,Ae 0  Mass flux, total temperature and angle sensitivities

f Frequency

CX(t) Power spectral density

GKy(t) Cross spectral density

G Grashof number

I DC current

i, Ai Unsteady currents

K d log Rw

d log Tw
K2  constant in equation 3.13

k Thermal conductivity

L Wire length, turbulent mixing length

M Mach number, wire time constant

m Mass flow fluctuation
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d log Amt d log Tw

Nu Nusselt number

d log k

d log Tw

Pressure

P(x), P(x,y) Probability, joint probability functions

Pr Prandtl number

q2  Defined inequation 3.3 (turbulent energy)

Q(x,y) Modulus of cross spectral density function

Re Reynolds number

R Wire resistance, correlation function

r Sensitivity ratio, fluctuating wire resistance

s Sensitivity

T, T Temperature

U, v, W Mean velocity components

U 1, U2 , u 3  Fluctuating velocity components in section 4

u', v, w Fluctuating velocity components

V, v Mean and fluctuating voltage

Zc Impedence

x, y, z Cartesian Coordinates
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a, y Temperature coefficients of resistance

a 1/(1+ 2 1M2)

a(y- 1)M 2

Ratio of specific heats

8 Boundary layer thickness

8* Displacement thickness

alog 1w
E Finite circuit factor - , viscous dissipationalog Rw

rl Recovery factor
Tw

0 Temperature fluctuation, overheat parameter Ti

X Wavelength, heat transfer coefficient

9Viscosity, wire time constant

p Density

UKinematic viscosity, voltage ratio
Tw -Tr

'twr Temperature loading Tr

xw Skin friction

a RMS value

ITime delay

0 Wire inclination angle

WMean square value

ca Time constant
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Subscripts denote values evaluated at

c Compensated
Tw +Ts

f Film temperature 2

g Gas temperature

m Measured

n Noise

o, t Total temperature

r Recovery temperature

w Wire temperature

Freestream

p Due to density

pu Due to mass flux

u Due to axial velocity

v Due to vertical velocity

Superscripts denote

Fluctuating component, rms value

rms value
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